Нормативные документы в сфере деятельности Федеральной службы по экологическому, технологическому и атомному надзору

Серия 05

Документы по безопасности, надзорной и разрешительной деятельности в угольной промышленности

Выпуск 40

ФЕДЕРАЛЬНЫЕ НОРМЫ И ПРАВИЛА В ОБЛАСТИ ПРОМЫШЛЕННОЙ БЕЗОПАСНОСТИ «ПРАВИЛА БЕЗОПАСНОСТИ В УГОЛЬНЫХ ШАХТАХ»

Утверждены приказом Федеральной службы по экологическому, технологическому и атомному надзору от 19 ноября 2013 г. N 550

ФЕДЕРАЛЬНЫЕ НОРМЫ И ПРАВИЛА В ОБЛАСТИ ПРОМЫШЛЕННОЙ БЕЗОПАСНОСТИ "ПРАВИЛА БЕЗОПАСНОСТИ В УГОЛЬНЫХ ШАХТАХ"

І. ОСНОВНЫЕ ПОЛОЖЕНИЯ

- 1. Настоящие Федеральные нормы и правила в области промышленной безопасности "Правила безопасности в угольных шахтах" (далее Правила) разработаны в соответствии с требованиями Федерального закона от 21 июля 1997 г. N 116-ФЗ "О промышленной безопасности опасных производственных объектов" (Собрание законодательства Российской Федерации, 1997, N 30, ст. 3588; 2000, N 33, ст. 3348; 2003, N 2, ст. 167; 2004, N 35, ст. 3607; 2005, N 19, ст. 1752; 2006, N 52, ст. 5498; 2009, N 1, ст. 17, ст. 21; N 52, ст. 6450; 2010, N 30, ст. 4002; N 31, ст. 4195, ст. 4196; 2011, N 27, ст. 3880; N 30, ст. 4590, ст. 4591, ст. 4596; N 49, ст. 7015, ст. 7025; 2012, N 26, ст. 3446; 2013, N 9, ст. 874; N 27, ст. 3478) (далее Федеральный закон N 116-ФЗ).
- 2. Настоящие Правила распространяются на организации по добыче угля (горючих сланцев) (далее угледобывающая организация), осуществляющие добычу угля (горючих сланцев) подземным способом, и обязательны для всех руководителей и специалистов организаций и их обособленных подразделений, занимающихся проектированием, строительством и эксплуатацией опасных производственных объектов угольной промышленности, на которых ведутся подземные горные работы (далее шахта), конструированием, изготовлением, монтажом, эксплуатацией и ремонтом технических устройств, надзорных и контролирующих органов, профессиональных аварийно-спасательных служб или профессиональных аварийно-спасательных формирований (далее ПАСС(Ф), а также для работников иных организаций, деятельность которых связана с посещением шахт.
- 3. Настоящие Правила устанавливают требования, соблюдение которых обеспечивает промышленную безопасность и безопасность при ведении горных работ, и направлены на предупреждение аварий и инцидентов в угледобывающих организациях и на обеспечение готовности угледобывающих организаций к локализации и ликвидации последствий аварий.

Приведение действующих шахт в соответствие с требованиями настоящих Правил осуществляется в сроки, установленные руководителем угледобывающей организации. До приведения действующих шахт в соответствие с требованиями настоящих Правил техническим руководителем угледобывающей организации разрабатываются мероприятия технически и экономически обоснованные и обеспечивающие их безопасную эксплуатацию, и в уведомительном порядке направляются в территориальное управление Ростехнадзора.

- 4. Утратил силу. Приказ Ростехнадзора от 08.08.2017 N 303.
- 5. На шахте должна быть организована служба (участок) аэрологической безопасности (далее АБ).
- 6. Руководитель шахты распорядительным документом устанавливает порядок выдачи заданий (далее наряд) на производство работ и порядок допуска к выполнению нарядов работников шахты.

Наряд оформляют в письменном виде.

Запрещается выдавать наряд на производство работ в места, в которых имеются нарушения требований промышленной безопасности и безопасности ведения горных работ, кроме работ по устранению нарушений.

На работы по устранению нарушений требований промышленной безопасности и безопасности ведения горных работ выдают наряд по устранению нарушений.

Работы повышенной опасности в шахте выполняют в соответствии с Федеральными нормами и правилами в области промышленной безопасности "Положение о применении нарядов-допусков при выполнении работ повышенной опасности на опасных производственных объектах горнометаллургической промышленности", утвержденными приказом Ростехнадзора от 18 января 2012 г. N 44 (зарегистрирован Министерством юстиции Российской Федерации 6 марта 2012 г., регистрационный N 23411; Бюллетень нормативных актов федеральных органов исполнительной власти, 2012, N 21).

- 7. Горные выработки, участки, здания, сооружения, установки, технические устройства в шахте принимают в эксплуатацию в порядке, утвержденном руководителем шахты.
- 8. Рабочие, занятые на горных работах, должны иметь профессиональное образование, соответствующее их профессиональной деятельности, должны быть обучены безопасным приемам работ, знать сигналы оповещения, правила поведения при авариях, места расположения средств спасения и уметь ими пользоваться, иметь инструкции по безопасному ведению технологических процессов, безопасному обслуживанию и эксплуатации технических устройств. Рабочие не реже чем каждые шесть месяцев должны проходить повторный инструктаж по безопасному ведению горных работ и не реже одного раза в год проверку знаний инструкций по профессии. Результаты проверки знаний инструкций по профессиям фиксируют документально в порядке, установленном руководителем угледобывающей организации.
- 9. Распорядительным документом руководитель шахты горные выработки и находящиеся в них вентиляционные сооружения, технические устройства, трубопроводы закрепляет за структурными подразделениями.
 - 10. Состояние горных выработок шахты ежесуточно контролируют специалисты шахты.

Места ведения работ в горных выработках шахты контролируют специалисты шахты ежесменно.

11. Специалисты угледобывающей организации и шахты при выявлении нарушений требований промышленной безопасности и безопасности ведения горных работ приостанавливают ведение этих работ и принимают меры по устранению выявленных нарушений.

В случаях, когда в горных выработках шахты выявленные нарушения требований промышленной безопасности и (или) безопасности ведения горных работ могут привести к возникновению аварии, инцидента или создают угрозу жизни и здоровью, работники из этих горных выработок выходят в горные выработки, в которых отсутствуют нарушения требований промышленной безопасности, и (или) на поверхность (далее - безопасное место).

12. Порядок нахождения работников угледобывающей организации и шахты в горных выработках в нерабочие праздничные дни определяет руководитель угледобывающей организации.

В нерабочие смены для выполнения работ в тупиковых горных выработках наряд выдают не менее чем двум работникам, имеющим стаж работы по профессии не менее шести месяцев.

Возобновление горных работ после их остановки на время более одной смены осуществляют после проверки состояния промышленной безопасности специалистом структурного подразделения шахты.

13. Технические устройства, обеспечивающие проветривание горных выработок, водоснабжение, откачку воды, дегазацию, спуск и подъем персонала, работу многофункциональной системы безопасности (далее - МФСБ), останавливают для выполнения ремонтных работ по письменному разрешению технического руководителя (главного инженера) шахты.

II. ТРЕБОВАНИЯ К ДОКУМЕНТАЦИИ

- 14. Эксплуатация шахты осуществляется по проектам разработки месторождений полезных ископаемых (далее технический проект) подготовленного, согласованного и утвержденного в соответствии с Положением о подготовке, согласовании и утверждении технических проектов разработки месторождений полезных ископаемых и иной проектной документации на выполнение работ, связанных с пользованием участками недр, по видам полезных ископаемых и видам пользования недрами, утвержденным постановлением Правительства Российской Федерации от 3 марта 2010 г. N 118 (Собрание законодательства Российской Федерации, 2010, N 10, ст. 1100).
- 15. Пользователь недр в соответствии с техническими проектами утверждает планы развития горных работ.
- 16. Технический руководитель (главный инженер) шахты утверждает документацию на выполнение горных работ, связанных с проведением, креплением, поддержанием горных выработок и выемке полезного ископаемого (далее документация по ведению горных работ).

Документацию по ведению горных работ разрабатывают для каждой выемочной единицы до начала ведения горных работ по проведению горных выработок. Документация по ведению горных работ, разработанная для выемочной единицы, должна содержать разделы, в соответствии с которыми при подготовке к эксплуатации этой выемочной единицы и ее эксплуатации будут вести горные работы по проведению, креплению, поддержанию горных выработок и выемке полезного ископаемого.

По решению технического руководителя (главного инженера) шахты разделы, входящие в состав документации по ведению горных работ для выемочной единицы, разрабатывают в виде отдельной документации на каждый вид горных работ:

проведение горных выработок;

крепление (замене, ремонту и извлечению крепи) горных выработок;

поддержание горных выработок;

выемка полезного ископаемого (ведение очистных работ).

17. Документация по ведению горных работ состоит из текстовой и графической частей.

Текстовая часть содержит сведения о выемочной единице, описание принятых технологических, технических и иных решений, пояснения, ссылки на нормативные и (или) технические документы, используемые при ее подготовке, расчеты и результаты расчетов, обосновывающие принятые решения.

Графическая часть отображает принятые технологические, технические и иные решения и должна быть выполнена в виде чертежей, схем, планов и других документов в графической форме.

- 18. Документация по ведению горных работ должна содержать меры по обеспечению промышленной безопасности и безопасному ведению горных работ.
- 19. Документация по ведению горных работ должна соответствовать техническим проектам и горно-геологическим и горнотехническим условиям.

При изменении горно-геологических и горнотехнических условий в документацию по ведению горных работ вносят соответствующие дополнения, учитывающие происшедшие изменения горно-геологических и горнотехнических условий.

Документацию по ведению горных работ после внесения в нее дополнений утверждает технический руководитель (главный инженер) шахты.

20. Работники структурного подразделения шахты до начала ведения горных работ должны быть ознакомлены под роспись с документацией по ведению горных работ.

III. ПРОТИВОАВАРИЙНАЯ ЗАЩИТА

- 21. Противоаварийная защита должна обеспечивать предупреждение аварий и инцидентов реализацией комплекса мер и средств, определенных техническими проектами и проектной документацией, а в случае их возникновения проведение аварийно-спасательных работ.
- 22. В горных выработках шахты, надшахтных зданиях и сооружениях должен быть оборудован комплекс систем и средств, обеспечивающий организацию и осуществление безопасности ведения горных работ, контроль и управление технологическими и производственными процессами в нормальных и аварийных условиях. Системы и средства данного комплекса должны быть объединены в МФСБ.

МФСБ должна обеспечивать:

мониторинг и предупреждение условий возникновения опасности геодинамического, аэрологического и техногенного характера;

оперативный контроль соответствия технологических процессов заданным параметрам;

применение систем противоаварийной защиты людей, оборудования и сооружений.

Состав МФСБ определяется проектной документацией с учетом установленных опасностей шахты и предусматривает:

аэрологическую безопасность:

система контроля и управления стационарными вентиляторными установками, вентиляторами местного проветривания и газоотсасывающими установками;

система контроля и управления дегазационными установками и контроля подземной дегазационной сети;

система аэрогазового контроля (далее - АГК);

система контроля запыленности воздуха и пылевых отложений с учетом особенностей, установленных пунктом 187 настоящих Правил;

контроль и прогноз динамических явлений:

система регионального, локального и текущего прогноза динамических явлений;

система геофизических наблюдений;

противопожарную защиту:

система обнаружения ранних признаков эндогенных и экзогенных пожаров и локализации экзогенных пожаров;

система контроля и управления пожарным водоснабжением;

связь, оповещение и определение местоположения персонала:

система определения местоположения персонала в горных выработках шахты;

система поиска и обнаружения людей, застигнутых аварией;

система оперативной, громкоговорящей и аварийной подземной связи и аварийного оповещения;

два независимых канала связи с подразделением $\Pi ACC(\Phi)$, обслуживающим шахту;

взрывозащиту:

система контроля и управления средствами взрывозащиты горных выработок;

система контроля и управления средствами взрывозащиты в газоотсасывающих и дегазационных трубопроводах и установках.

МФСБ должна соответствовать требованиям в области промышленной безопасности и технического регулирования, обеспечения единства средств измерений и стандартов на взрывозащищенное электрооборудование, автоматизированные системы управления, информационные технологии, измерительные системы и газоаналитическое оборудование.

Технические подсистемы и средства МФСБ должны соответствовать требованиям раздела 6 национального стандарта Российской Федерации "ГОСТ Р 55154-2012. Оборудование горношахтное. Системы безопасности угольных шахт многофункциональные. Общие технические требования", утвержденного и введенного в действие приказом Федерального агентства по техническому регулированию и метрологии от 22 ноября 2012 г. N 1077.

В качестве предупредительной меры по предотвращению аварийной ситуации угледобывающая организация в режиме реального времени должна обеспечить возможность передачи с МФСБ информации о срабатывании систем противоаварийной защиты людей, оборудования и сооружений и количестве выявленных критических изменений параметров работы шахты по каналам связи в территориальное управление Федеральной службы по экологическому, технологическому и атомному надзору.

Угледобывающая организация должна осуществлять дистанционный мониторинг (контроль) параметров безопасности и анализ данных, полученных от МФСБ шахты. В рамках государственного мониторинга в области промышленной безопасности угледобывающая организация в режиме реального времени должна обеспечить передачу подлежащей дальнейшему учету информации от МФСБ о срабатывании систем противоаварийной защиты и о количестве выявленных критических изменений параметров работы шахты по каналам связи в территориальное управление Федеральной службы по экологическому, технологическому и атомному надзору.

23. На шахте разрабатывают план мероприятий по локализации и ликвидации последствий аварий на опасных производственных объектах. В план мероприятий по локализации и ликвидации последствий аварий на опасных производственных объектах включается специальный раздел, определяющий порядок действий в случае аварии по спасению людей и ликвидации аварий в начальный период возникновения и предупреждения ее развития - план ликвидации аварий (далее - ПЛА) в горных выработках шахты. ПЛА разрабатывается в соответствии с Федеральными нормами и правилами в области промышленной безопасности "Инструкция по составлению планов ликвидации аварий на угольных шахтах", утвержденными приказом Федеральной службы по экологическому, технологическому и атомному надзору от 31 октября 2016 г. N 451 (зарегистрирован Министерством юстиции Российской Федерации 29 ноября 2016 г., регистрационный N 44481).

24. Утратил силу.

25. При возникновении аварии порядок действий при локализации и ликвидации последствий аварий необходимо выполнять в соответствии с Федеральными нормами и правилами в области промышленной безопасности "Инструкция по локализации и ликвидации последствий аварий на опасных производственных объектах, на которых ведутся горные работы", утвержденными приказом Федеральной службы по экологическому, технологическому и атомному надзору от 31 октября 2016 г. N 449 (зарегистрирован Министерством юстиции Российской Федерации 29 ноября 2016 г., регистрационный N 44480).

26. Утратил силу.

- 27. Сеть действующих горных выработок шахты должна обеспечивать эвакуацию персонала при аварии из наиболее удаленных загазованных горных выработок на поверхность или в горные выработки со свежей струей воздуха по маршрутам, предусмотренным ПЛА, за время защитного действия средств индивидуальной защиты органов дыхания изолирующего типа (далее самоспасатель).
- 28. Для спасения людей в горных выработках шахты оборудуются пункты переключения в самоспасатели (далее ППС) и пункты коллективного спасения персонала (далее ПКСП). Размещение ППС и ПКСП в горных выработках шахты определяется проектной документацией, утвержденной техническим руководителем (главным инженером) шахты, с учетом обеспечения дополнительной возможности самоспасения персонала на маршруте следования на поверхность в самоспасателе.

В горных выработках шахты по пути следования работников устанавливаются указатели направления движения к ППС, ПКСП и на поверхность, в том числе осязаемыми и со светоотражающей окраской.

ПКСП оборудуют техническими средствами контроля содержания метана, вредных газов, кислорода и температуры внутри ПКСП и в рудничной атмосфере горной выработки, в месте установки ПКСП.

В ПКСП устанавливают средства связи работников с диспетчером шахты.

ПКСП обеспечивают обособленным или автономным проветриванием.

Комплектация ППС и ПКСП средствами индивидуальной и коллективной защиты, средствами оказания первой помощи, а также организация контроля их состояния, порядок их замены и обслуживания должны быть определены проектной документацией, которую разрабатывают с учетом максимального количества работников, выходящих к ППС и ПКСП в случае возникновения аварии по маршрутам, предусмотренным ПЛА.

Расстановку ППС и ПКСП в горных выработках шахты указывают в ПЛА.

В подготовительных забоях допускается использовать ППС в качестве временного пункта хранения постоянно закрепленных за работниками шахты самоспасателей. При этом ППС должен быть установлен на расстоянии от забоя, рассчитанном в соответствии с приложением N 23 к Федеральным нормам и правилам в области промышленной безопасности "Инструкция по составлению планов ликвидации аварий на угольных шахтах", утвержденным приказом Федеральной службы по экологическому, технологическому и атомному надзору от 31 октября 2016 г. N 451 (зарегистрирован Министерством юстиции Российской Федерации 29 ноября 2016 г., регистрационный N 44481), с изменениями, внесенными приказом Федеральной службы по экологическому, технологическому и атомному надзору от 8 августа 2017 г. N 303 (зарегистрирован Министерством юстиции Российской Федерации 31 августа 2017 г., регистрационный N 48046), а работники

шахты должны быть обеспечены малогабаритными самоспасателями с сокращенным временем защитного действия.

29. В угледобывающей организации должен быть организован учет персонала, находящегося в шахте.

Технический руководитель (главный инженер) шахты устанавливает порядок учета персонала, не вышедшего из шахты, и меры по розыску.

- 30. В горных выработках шахты в местах, определенных техническим руководителем (главным инженером) шахты, устанавливают аншлаги с названиями горных выработок, указатели направления движения к запасным выходам на поверхность, знаки безопасности и сигнальные устройства. Аншлаги с названиями горных выработок и указатели направления движения к запасным выходам на поверхность устанавливают на сопряжениях горных выработок. Аншлаги с названиями горных выработок, указатели направления движения к запасным выходам на поверхность и знаки безопасности выполняют светоотражающими.
- 31. Работники шахты и подрядных организаций, занятые на работах в горных выработках шахты, должны быть обеспечены постоянно закрепленными за ними самоспасателями, головными светильниками и техническими устройствами определения местоположения, аварийного оповещения, поиска и обнаружения.

IV. ТРЕБОВАНИЯ К РАБОТНИКАМ

32. Персонал шахты и персонал других организаций должен пройти инструктажи по промышленной безопасности и применению самоспасателей. Инструктажи по промышленной безопасности и применению самоспасателей должны проводиться по утвержденной руководителем угледобывающей организации программе.

Инструктажи по промышленной безопасности и применению самоспасателей проводятся не реже одного раза в шесть месяцев.

При проведении инструктажа по применению самоспасателей персонал должен быть ознакомлен со способами проверки их работоспособности и исправности.

Персонал, осуществляющий ведение горных работ в подземных условиях, не реже одного раза в два года проходит тренировки по применению самоспасателей. Тренировки проводятся с применением самоспасателей и (или) тренажеров в среде, имитирующей задымленность, содержание вредных и опасных газов в которой не превышает предельно допустимые концентрации. Время проведения тренировки в самоспасателях и (или) тренажерах должно составлять не менее половины времени защитного действия закрепленных за работниками самоспасателей.

Работники, ведущие работы в горных выработках шахты, для выхода из которых предусмотрены ППС или ПКСП, при проведении тренировок должны приобрести навыки переключения в другой самоспасатель в задымленной газовоздушной среде.

33. Запрещается нахождение в горных выработках шахты персонала шахты, угледобывающей и других организаций без самоспасателей, головных светильников и технических устройств определения местоположения, аварийного оповещения, поиска и обнаружения.

В горных выработках газовых по метану шахт запрещается нахождение персонала шахты, угледобывающей и других организаций без сигнализаторов метана, совмещенных с головными светильниками.

34. Работники шахты, угледобывающей организации, подрядных организаций, находящиеся в горных выработках, обязаны незамедлительно ставить в известность своего непосредственного

руководителя или в установленном в угледобывающей организации порядке других должностных лиц о нарушениях требований промышленной безопасности и приостанавливать работу.

35. Работники шахты, угледобывающей организации, подрядных организаций, связанные с работами в горных выработках шахты, обязаны:

каждые шесть месяцев проходить повторный инструктаж по промышленной безопасности;

соблюдать требования документации по ведению горных работ, требования промышленной безопасности при обслуживании и эксплуатации технических устройств;

знать сигналы аварийного оповещения, правила поведения при авариях и инцидентах, ПЛА для горных выработок шахты, в которых они могут находиться, запасные выходы на поверхность, места размещения ППС, ПКСП и других средств спасения и противопожарной защиты и уметь пользоваться ими.

36. Работникам шахты, подрядных и организаций, чья деятельность связана с посещением шахты, в горных выработках запрещается:

выполнять работы, не предусмотренные нарядом;

иметь при себе курительные принадлежности, курить и пользоваться открытым огнем в горных выработках шахты, у устьев, выходящих на поверхность горных выработок, в надшахтных зданиях и сооружениях и на расстоянии менее 30 метров от них;

спать, иметь при себе и принимать алкогольные напитки, наркотические или токсические вещества, находиться в состоянии алкогольного, наркотического или иного токсического опьянения в горных выработках шахты, зданиях и сооружениях, эксплуатируемых угледобывающей организацией;

находиться без самоспасателя, головного светильника и технического устройства определения местоположения, аварийного оповещения, поиска и обнаружения;

в горных выработках газовых по метану шахт снимать с себя сигнализатор метана, совмещенный с головными светильниками.

V. ВЕДЕНИЕ ГОРНЫХ РАБОТ

37. Запрещается ведение горных работ без утвержденной техническим руководителем (главным инженером) шахты документации по ведению горных работ.

При изменении горно-геологических и горнотехнических условий горные работы прекращают до внесения изменений в документацию по ведению горных работ.

- 38. Горные работы должны выполнять не менее чем два работника, причем стаж работы по профессии одного из них должен быть не менее одного года.
- 39. Ведение горных работ работниками структурного подразделения шахты, угледобывающей организации, подрядной организации в горных выработках шахты, закрепленных за другим структурным подразделением, необходимо согласовывать с руководителем этого структурного подразделения.
- 40. До начала ведения горных работ на участках шахтного поля со сложными горногеологическими условиями должны быть выполнены меры, обеспечивающие безопасное ведение горных работ, утвержденные техническим руководителем (главным инженером) шахты.

VI. УСТРОЙСТВО ВЫХОДОВ ИЗ ГОРНЫХ ВЫРАБОТОК

41. Все горные выработки, предназначенные для передвижения людей, должны обеспечивать свободный проход персонала и работников ПАСС(Ф) при ведении горноспасательных работ.

В горизонтальных и наклонных горных выработках высота и ширина части выработки, предназначенной для передвижения людей, должны быть не менее 1,8 м и не менее 0,7 м соответственно.

42. На шахте должно быть не менее двух (основной и запасной) отдельных выходов на поверхность, оборудованных для передвижения (перевозки) людей. На каждом горизонте шахты должно быть не менее двух (основной и запасной) отдельных выходов на вышележащий (нижележащий) горизонт или поверхность, приспособленных для передвижения (перевозки) людей.

Горные выработки, оборудованные для передвижения (перевозки) людей на поверхность (с горизонта на горизонт), должны иметь разное направление движения вентиляционных струй. Две и более выработок, по которым вентиляционная струя движется в одном направлении, являются одним запасным выходом.

43. При центральном расположении стволов (на одной промплощадке) после их проходки (углубки) до проектного горизонта в первую очередь проводят горную выработку, соединяющую эти стволы, затем выполняют работы по оборудованию одного из стволов постоянными средствами перевозки людей.

При вскрытии нового горизонта одним стволом или подготовке его уклонами в первую очередь проводят горные выработки для обеспечения горизонта двумя выходами и его проветривания за счет общешахтной депрессии (компрессии).

При фланговом расположении ствола после его проходки до проектного горизонта проводят работы по его оборудованию постоянными или временными средствами перевозки людей и оборудованию водоотлива и после них - работы по проведению горных выработок, обеспечивающих второй выход с горизонта.

44. Вертикальные стволы, являющиеся выходами на поверхность, оборудуют техническими устройствами, обеспечивающими перевозку людей, и лестничными отделениями.

При центральном расположении двух стволов:

лестничное отделение в одном из них может отсутствовать при условии, что он оборудован двумя техническими устройствами, обеспечивающими перевозку людей, с независимым снабжением электрической энергией;

в стволах глубиной более 500 м лестничное отделение не оборудуют при условии, что стволы оборудованы двумя техническими устройствами с независимым снабжением электрической энергией, обеспечивающими перевозку людей;

в стволах глубиной до 70 м подъемную установку в одном из них не устанавливают при условии, что оба ствола имеют лестничное отделение.

- 45. Горные выработки, выходящие на поверхность, у устья которых не предусмотрено постоянное присутствие персонала, должны быть оборудованы устройствами, обеспечивающими выход из шахты и препятствующими доступу в них с поверхности, и сигнализацией, выведенной к горному диспетчеру.
- 46. Наклонные горные выработки, предназначенные для передвижения людей, оборудуют при углах наклона:

```
от 7 до 10^{\circ} - трапами;
```

от 11 до 25° - трапами с перилами;

от 26 до 30° - сходнями со ступенями и перилами;

от 31 до 45° - лестницами с горизонтальными ступенями и перилами;

более 45° - лестничными отделениями.

47. Лестницы в лестничных отделениях должны быть установлены под углом не более 80°. Ширина лестниц должна быть не менее 0,4 м, а расстояние между ступенями - не более 0,4 м. Расстояние между крепью горной выработки и лестницей у ее основания должно быть не менее 0,6 м.

В лестничных отделениях не более чем через 8 м устраивают горизонтальные полки. Лестницы должны выступать не менее чем на 1 м над горизонтальными полками.

В горизонтальных полках для свободного прохода устраивают лазы шириной не менее 0,6 м и высотой не менее 0,7 м. Высоту лаза определяют по нормали к установленной в нем лестнице.

Лазы над первой верхней лестницей должны быть закрыты лядами. Лазы в полках должны быть смещены на ширину лаза.

Если выходами из подземных выработок на поверхность служат наклонные горные выработки, то в одной из них должны быть обеспечены механизированная перевозка людей и проход для их свободного передвижения.

- 48. На действующих шахтах при подготовке горизонта вертикальным стволом и наклонной горной выработкой или двумя наклонными горными выработками запасный выход оборудуют в соответствии с требованиями пункта 47 по одной из этих горных выработок.
- 49. Для строящихся (реконструируемых) газовых шахт запрещается ведение горных работ по добыче угля по каждому пласту более чем в одном уклонном поле.
- 50. Выемочные участки, подготовленные в уклонных полях, должны иметь не менее двух горных выработок, пройденных на границах уклонного поля, по которым должен быть обеспечен выход людей из горных выработок выемочного участка в горные выработки горизонта или на поверхность.
- 51. Из очистной горной выработки (далее лава) должно быть не менее двух выходов в оконтуривающие выемочный участок горные выработки.

При наличии опережающих лаву горных выработок выход на нижний штрек должен быть впереди лавы.

На крутых, крутонаклонных и наклонных пластах кроме пластов, отрабатываемых столбами по падению, при транспортировании угля по лаве самотеком должно быть не менее двух выходов на нижнюю горную выработку, по которым не транспортируют уголь. Один из выходов должен быть впереди лавы.

На крутых и крутонаклонных пластах, при комбайновой выемке угля без оставления магазинных уступов, на весьма тонких пластах при транспортировании угля по рештакам, а также при работе по схеме лава - штрек должен быть обеспечен второй выход на откаточный (конвейерный) штрек со стороны выработанного пространства.

При подходе лавы к техническим границам допускается оборудование нижнего выхода через задние печи или гезенки.

При вынимаемой мощности пласта 1 м и менее в каждой из последовательно проветриваемых лав должен быть обеспечен выход через свои промежуточные штреки на ходок, пройденный на всю высоту этажа и оборудованный для передвижения людей.

При отработке системами с полной закладкой выработанного пространства на крутых пластах из лавы должен быть обеспечен один оборудованный для передвижения людей выход на вентиляционный и второй - на откаточный горизонт.

При отработке пластов выемочными столбами по падению (восстанию) на участках пластов, угрожаемых по прорыву воды (пульпы или глины), из лавы должен быть обеспечен выход на вышележащий горизонт.

52. Наклонные горные выработки, являющиеся выходами с горизонта на горизонт или на поверхность, по которым проводят доставку грузов и персонала, на участках, где находятся нижние и промежуточные приемные площадки, должны иметь обходные выработки.

Запрещается нахождение персонала в наклонных горных выработках при доставке по ним грузов, кроме персонала, его сопровождающего.

53. При отработке мощных пластов вход под щит и выход из-под него оборудуют подвесной металлической канатной лестницей. Лестницу подвешивают к щиту и спускают по углеспускной печи до ближайшей сбойки, соединяющей данную печь с ходовой печью.

Второй выход из-под щита оборудуют в ближайшей к завалу углеспускной печи. Данную печь оборудуют подвесной металлической канатной лестницей, подвешенной к щиту. Лестницу опускают до сбойки с вентиляционной печью, пройденной с промежуточного или откаточного (параллельного) штрека.

Между крайними секциями щитового перекрытия протягивают два предохранительных каната, к которым прикрепляют пояса работающих под перекрытием. При мощности пласта менее 6 м может быть протянут один предохранительный канат.

VII. ПРОВЕДЕНИЕ И КРЕПЛЕНИЕ ГОРНЫХ ВЫРАБОТОК

- 54. Проведение и крепление горных выработок осуществляют в соответствии с документацией по проведению и креплению горных выработок.
- 55. Способы и приемы ведения горных работ по проведению и креплению горных выработок должны исключать обвалы и обрушения пород в рабочем пространстве.
- 56. При проведении горных выработок должны быть обеспечены их поперечные сечения, предусмотренные проектной документацией.

Требования к минимальным площадям поперечных сечений горизонтальных и наклонных горных выработок в свету, ширине проходов для людей представлены в приложении N 2 к настоящим Правилам.

57. Перепуск угля, породы, закладочных материалов и передвижение людей должны быть организованы по двум параллельным горным выработкам, сбитым между собой через каждые 8 - 10 м, или по одной горной выработке, имеющей два отделения.

Ходовые отделения горных выработок ограждают от углеспускных (породоспускных) отделений сплошной отшивкой с закрываемыми окнами для пропуска застрявших кусков угля и породы.

При спуске угля (закладочного материала, породы) по металлическим трубам отшивку ходового отделения не проводят.

58. В случае образования пустот при проведении, креплении и ремонте горных выработок их закладывают или тампонируют.

Для заполнения пустот за крепью горных выработок применяют негорючий материал.

- 59. При проведении и креплении горных выработок запрещается нахождение персонала в незакрепленной части горной выработки.
- 60. При сбойке горных выработок горные работы ведут с соблюдением мер по обеспечению безопасности ведения горных работ.
- 61. Запрещается использование постоянной крепи горной выработки в качестве опорной конструкции, за исключением подвески вентиляционных труб, кабельной сети, трубопроводов, технических устройств и их элементов, крепление которых к постоянной крепи горной выработки предусмотрено документацией по ведению горных работ.
- 62. При проведении горных выработок уступами по мощным пластам опережение верхнего уступа относительно нижнего должно быть не более 1,5 м.

Верхний уступ должен быть огражден по кромке.

- 63. В наклонных горных выработках устанавливают не менее двух заграждений, защищающих персонал, выполняющий работы по их проведению или ремонту, от падения сверху предметов.
- 64. При разминовке технических устройств в наклонных горных выработках одно из них должно находиться в неподвижном состоянии.

Запрещается нахождение персонала ниже места разминовки технических устройств.

VIII. ПРОХОДКА, КРЕПЛЕНИЕ И АРМИРОВАНИЕ ВЕРТИКАЛЬНЫХ ГОРНЫХ ВЫРАБОТОК

65. Запрещается проходка вертикальной горной выработки после сооружения ее устья без перекрытия на нулевой отметке и без предохранительного полка, защищающего персонал, находящийся в забое, от падения предметов.

Забой вертикальной горной выработки при ее углубке ограждают от действующих подъемов с рабочего горизонта предохранительным полком или целиком. Предохранительный полок или целик должен быть рассчитан на падение груза, массу которого принимают в соответствии с приложением N 3 к настоящим Правилам.

- 66. Для выдачи породы бадьями из забоя по вертикальным горным выработкам в перекрытиях устраивают оборудованные лядами проемы, предназначенные для прохода бадьи. Ляды должны открываться только при проходе бадьи и исключать возможность падения в вертикальную горную выработку породы или иных предметов при разгрузке бадьи. Проемы, предназначенные для прохода бадьи, ограждают.
- 67. Запрещается нахождение людей в забое вертикальной горной выработки во время производства работ по замене каната, его креплению, замене подъемного сосуда, навеске и снятию бетонопроводов, ликвидации в бетонопроводе участков затвердевшего бетона.

68. Проемы площадок размещения технических устройств в копрах оборудуют лядами или ограждают на высоту не менее 1600 мм. Ограждение в нижней части на высоту не менее 300 мм сплошное.

Нулевая, разгрузочная и подшкивная площадки копров должны быть освещены.

- 69. Призабойную часть проходимого или углубляемого ствола оборудуют одноэтажными или многоэтажными перемещаемыми полками. Подвеска одноэтажных и многоэтажных полков должна обеспечивать горизонтальное их расположение при обрыве одного из канатов и исключать возможность заклинивания при перемещении.
- 70. При перемещении полка по вертикальной горной выработке должна быть обеспечена безопасность выполнения работ.
- 71. При совмещении работ по проходке вертикальной горной выработки и работ по возведению в ней постоянной крепи, выполняемых с подвесного полка, полок должен быть оборудован ограждениями высотой не менее 300 мм, исключающими через него падение предметов в забой вертикальной горной выработки.

Полки и забой вертикальной горной выработки оборудуют звуковой сигнализацией.

Проходческие полки оборудуют смотровыми окнами.

72. Работы по перемещению полков и других технических устройств в вертикальной горной выработке относят к работам повышенной опасности.

ІХ. ОЧИСТНЫЕ РАБОТЫ

- 73. Запрещается ведение очистных работ более чем в двух смежных этажах. Погашение целиков и отработку отдельных выемочных участков на вышележащих этажах производят в порядке, утвержденном техническим руководителем (главным инженером) шахты.
- 74. Очистные работы до первичной посадки основной кровли, при подходе лавы к границам выемочного участка и охранным целикам ведут при условии обязательного выполнения мер, обеспечивающих безопасность ведения горных работ в данных условиях, утвержденных техническим руководителем (главным инженером) шахты.
- 75. В лавах, оборудованных механизированными комплексами, следует применять комбайны с бесцепной системой подачи. При углах падения 9° и более (при работе с рамы конвейера) комбайн должен быть оборудован двумя независимыми тормозными устройствами.

Запрещается нахождение людей в лаве ниже комбайна при его работе и спуске на пластах с углом падения более 25°, за исключением механизированных крепей, оборудованных ограждением, препятствующим попаданию кусков угля и породы в места нахождения персонала.

- 76. Выемку надштрековых целиков у вентиляционных штреков одновременно с отработкой лав нижележащего этажа производят при углах падения пласта до 30° и при наличии оконтуривающих горных выработок.
- 77. Транспортирование угля из лавы к погрузочному пункту при наличии целиков над штреком на пологих и наклонных пластах, отрабатываемых сплошной системой разработки, производят в горные выработки, расположенные впереди забоя.
- 78. В вертикальных и наклонных горных выработках, по которым уголь транспортируют за счет собственного веса, должны быть предусмотрены меры по предупреждению и ликвидации застреваний угля в этих выработках.

79. Запрещается доставка технических устройств и материалов лавными конвейерами, не оборудованными приспособлениями для их удержания, при углах их расположения более 18° относительно горизонта.

Х. КРЕПЛЕНИЕ И УПРАВЛЕНИЕ КРОВЛЕЙ

- 80. В лавах применяют крепь с характеристиками, соответствующими горно-геологическим условиям.
- 81. Крепление сопряжений лавы с примыкающими к ним горными выработками проводят механизированной передвижной крепью или другими видами крепи, предусмотренными документацией по ведению горных работ.
- 82. Меры, обеспечивающие безопасность работ по посадке кровли, должны быть предусмотрены в документации по ведению горных работ.
- 83. В случаях, когда обрушение кровли не происходит при шаге ее посадки, принятом в документации по ведению горных работ, проводят ее принудительное обрушение. Комплекс работ по принудительному обрушению кровли включают в документацию по ведению горных работ. Ведение горных работ по добыче угля в лаве во время принудительного обрушения кровли запрещается.

ХІ. ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ ПРИ РАЗРАБОТКЕ МОЩНЫХ ПЛАСТОВ

- 84. На пластах с углом падения более 30° отработку подэтажей системами с обрушением кровли ведут в нисходящем порядке.
- 85. При отработке пласта слоями в нисходящем порядке и при отсутствии устойчивой межслоевой породной пачки обрушение потолочины или закладку выработанного пространства производят на межслоевое перекрытие. Отставание лавы каждого нижележащего слоя от границы обрушенного или заложенного пространства лавы вышележащего слоя не менее 20 м.
- 86. При комбинированной системе разработки с гибким перекрытием запрещается ведение очистных работ под перекрытием при необрушенной кровле в монтажном слое.
- 87. Запрещается нахождение людей в выработанном пространстве при заполнении его закладкой и производство закладочных работ при отсутствии двусторонней связи между рабочим местом и закладочным комплексом.
- 88. Опускать щитовое перекрытие разрешается только после оборудования его предохранительными средствами (канаты, трапы, решетки), монтажа не менее одной секции следующего щитового перекрытия (за исключением последнего щитового столба на выемочном участке) и обрушения потолочины над щитом для создания предохранительной подушки высотой не менее мощности пласта.

В случае задержки обрушения потолочины (межэтажного или подэтажного целика) или зависания обрушенных пород необходимо прекратить опускание щитового перекрытия и применить принудительное обрушение. На время обрушения персонал из-под щита выводят в безопасное место.

89. При щитовой системе разработки должна быть пройдена горная выработка (вентиляционная печь), смещенная в сторону кровли пласта, которая сбивается сбойкой с первой и второй углеспускными печами, считая от завала. Для предотвращения перекрытия отбитым углем сбойки и предупреждения застревания угля в печах последние разделывают над основным или промежуточным штреком в аккумулирующие, надежно закрепленные бункера, высоту которых выбирают из расчета размещения отбитого угля за один прием взрывания.

Вентиляционную печь проводят на высоту более 3 м высоты бункера. Вентиляционную печь крепят и оборудуют лестницей. На пластах мощностью менее 5 м допускается вместо проведения вентиляционной печи бурение скважины диаметром не менее 0,7 м.

XII. ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ ПРИ ГИДРАВЛИЧЕСКОМ СПОСОБЕ ДОБЫЧИ УГЛЯ

- 90. Участковые станции напорного гидротранспорта располагают в камерах, а при сроках службы до одного года в нишах. Участковую станцию напорного гидротранспорта оборудуют камерой углесосов, приемным зумпфом вместимостью не менее 10-минутной производительности углесосов и аварийным пульпосборником.
- 91. В зданиях и камерах, в которых размещены углесосы и насосные станции, устанавливают телефоны с выведенным сигнальным устройством, обеспечивающие связь с горным диспетчером шахты.
 - 92. Перед началом работы гидромонитора персонал из зоны действия его струи выводят.
- 93. При гидравлической и механогидравлической отбойке угля в действующей лаве работы должны выполнять не менее двух рабочих.
 - 94. Запрещается:

ручное управление гидромониторами при давлении воды свыше 3 МПа (30 кгс/см2);

оставление без надзора работающего гидромонитора с ручным и дистанционным управлением;

работа на гидромониторах без защитных приспособлений от отраженных брызг воды, кусков угля и породы;

ведение очистных работ до спуска воды, скопившейся в отработанном пространстве.

- 95. Гидромонитор снабжают задвижкой, вмонтированной в него или в водоподводящий трубопровод на расстоянии не более 50 м от гидромонитора.
- В месте установки задвижки при ее закрывании вывешивают щит с надписью: "Не открывать! Работают люди!".
- 96. Включение и выключение технологических насосов, а также открывание и закрывание задвижек на технологических водоводах производят по разрешению горного диспетчера шахты, за исключением аварийных случаев.
- 97. При проведении сбоек между выемочными печами или штреками гидравлическим способом персонал из выемочного штрека или печи, на которые проводят сбойки, выводят, а на расстоянии 20 м по обе стороны от места выхода сбойки устанавливают знаки "Вход запрещен".
- 98. При гидроотбойке гидромониторную струю направляют по направлению движения воздуха за счет общешахтной депрессии (компрессии).
- 99. Проветривание лав осуществляют за счет общешахтной депрессии (компрессии) с помощью сбоек или скважин, проводимых на соседний выемочный штрек или печь. Расстояние между сбойками (скважинами) не более 30 м. На пластах средней мощности и мощных пластах нижний уровень вентиляционной скважины должен быть расположен выше уровня почвы выемочной печи (штрека) не менее чем на 0,5 м.

При отработке пластов крутого падения допускается проветривание лав вентиляторами местного проветривания (ВМП).

На одном выемочном участке размещается не более трех оборудованных для очистной выемки смежных лав, проветриваемых за счет общешахтной депрессии (компрессии) последовательно с подсвежением.

Впереди лав проводят не более двух резервных печей (штреков), проветриваемых за счет общешахтной депрессии (компрессии).

- 100. При проветривании лав за счет общешахтной депрессии с помощью сбоек или скважин, кроме действующих сбоек, по которым идет исходящая из забоя струя воздуха, впереди лавы проводят не менее одной резервной сбойки или скважины.
- 101. В горных выработках, соединяющих камеру гидроподъема с горными выработками околоствольного двора, устанавливают водонепроницаемую дверь.

XIII. Разработка склонных к динамическим явлениям пластов

- 102. Разработку пластов, склонных к внезапным выбросам угля (породы) и газа, и пластов, склонных к горным ударам, осуществляют в соответствии с Федеральными нормами и правилами в области промышленной безопасности "Инструкция по прогнозу динамических явлений и мониторингу массива горных пород при отработке угольных месторождений", утвержденными приказом Федеральной службы по экологическому, технологическому и атомному надзору от 15 августа 2016 г. N 339 (зарегистрирован Министерством юстиции Российской Федерации 7 ноября 2016 г., регистрационный N 44251).
- 103. Технический руководитель (главный инженер) шахты организует прогноз динамических явлений, проведение мер по предотвращению динамических явлений и контроль их эффективности.
- 104. На шахтах, отрабатывающих склонные к динамическим явлениям пласты, меры по безопасному ведению горных работ при вскрытии, проведении подготовительных горных выработок и ведению горных работ на выемочных участках включают в документацию по ведению горных работ.
- 105. Горные работы на участках категории "опасно" на склонных к динамическим явлениям пластах запрещаются, за исключением работ, проводимых для приведения горного массива в неопасное состояние.

В шахтах, разрабатывающих склонные к динамическим явлениям пласты, запрещается совмещение работ по добыче угля и проведению горных выработок с выполнением работ по предотвращению динамических явлений.

Решение о возобновлении горных работ после приведения горного массива в неопасное состояние принимает технический руководитель (главный инженер) шахты.

XIV. СОДЕРЖАНИЕ И РЕМОНТ ГОРНЫХ ВЫРАБОТОК

106. Крепь и армировку вертикальных и наклонных стволов осматривают:

технический руководитель (главный инженер) шахты не реже одного раза в квартал;

главный механик не реже одного раза в месяц;

старший механик не реже одного раза в неделю;

специалисты структурного подразделения, в ведении которых находится горная выработка, ежесуточно.

Результаты осмотра документально фиксируют в порядке, утвержденном техническим руководителем (главным инженером) шахты.

107. Профильную съемку армировки и замер зазоров безопасности в стволе осуществляют не реже одного раза в два года.

По результатам профильной съемки технический руководитель (главный инженер) шахты выдает указания о проведении необходимых работ по устранению выявленных отклонений.

- 108. При обнаружении нарушения крепи в горной выработке руководители структурного подразделения, за которыми она закреплена, немедленно принимают меры по приведению горной выработки в состояние, соответствующее проектной документации.
- 109. Замену и ремонт крепи сопряжений штреков с квершлагами, бремсбергами, уклонами, камерами, ходками проводят под руководством специалиста структурного подразделения, занятого этими работами.
- 110. Работы по ликвидации сплошных завалов в горных выработках проводят с соблюдением мер, обеспечивающих безопасное ведение работ, утвержденных техническим руководителем (главным инженером) шахты.
- 111. При проведении ремонтных работ в вертикальных и наклонных горных выработках запрещается подъем и передвижение по ним персонала, не занятого на ремонтных работах.

В горных выработках с углом наклона более 18° запрещается проводить ремонтные работы одновременно более чем в одном месте.

112. В документации по ведению горных работ по ремонту вертикальной горной выработки должны быть предусмотрены меры, обеспечивающие безопасность ведения работ:

прекращение движения подъемных сосудов по вертикальной горной выработке;

устройство перекрытия вертикальной горной выработки ниже места ее ремонта предохранительным полком, исключающим падение в нее кусков породы и иных предметов;

устройство перекрытия вертикальной горной выработки не более чем на 5 м выше от места ее ремонта, обеспечивающего защиту персонала, выполняющего работы по ремонту от падающих предметов;

устройство неподвижного или подвесного полка для ведения работ по ремонту.

Работы по ремонту стволов проводят под руководством специалиста структурного подразделения.

Работы по ремонту вертикальных горных выработок следует вести с применением средств индивидуальной защиты от падения.

XV. ПРЕДУПРЕЖДЕНИЕ ПАДЕНИЯ ЛЮДЕЙ И ПРЕДМЕТОВ В ГОРНЫЕ ВЫРАБОТКИ

113. Устья действующих и находящихся в проходке вертикальных и наклонных горных выработок, оборудованных подъемными установками, ограждают с нерабочих сторон стенками или

металлической сеткой высотой не менее 2,5 м, а с рабочих сторон - решетками или дверями, оборудованными блокировкой, включающей сигнал "Стоп" у машиниста, когда они открыты.

Крепь устьев вертикальных и наклонных горных выработок, не оборудованных подъемом, должна выступать над поверхностью не менее чем на 1 м по направлению горной выработки.

Устья вертикальных и наклонных горных выработок перекрывают закрепленными на крепи лядами или решетками, оборудованными запорами.

Зумпфы стволов ограждают для предотвращения падения в них людей.

При пересечении вертикальных и горизонтальных горных выработок для передвижения персонала по горизонтальной горной выработке должна быть пройдена обходная горизонтальная горная выработка, или его передвижение должно осуществляться под лестничным отделением, оборудованным в вертикальной горной выработке.

114. Устья наклонных горных выработок с углом наклона более 25° в местах их сопряжений с горизонтальными горными выработками ограждают или перекрывают прочными полками, лядами или металлическими решетками.

При ликвидации этих горных выработок их устья перекрывают полками и ограждают.

Под щитовым перекрытием при щитовой системе выемки металлические решетки подвешивают к перекрытию, при этом ближайшую к целику углеспускную печь перекрывают решеткой на уровне почвы входной сбойки. Остальные сбойки между ходовой и углеспускной печами изолируют.

- 115. Перед устьями вертикальных горных выработок, оборудованных лядами, на нижней и верхней приемных площадках устанавливают ограждения. При отсутствии механического привода для открывания ляд персонал должен работать в предохранительных поясах.
 - 116. Лестничное отделение в вертикальных горных выработках должно быть ограждено.
- 117. При отработке мощных пластов по технологии с обрушением кровли перед началом очистных работ определяют участок земной поверхности, на котором возможно образование провалов. Данный участок земной поверхности ограждают и по периметру устанавливают предупреждающие об опасности и запрещающие доступ аншлаги.

Провалы земной поверхности обортовывают и засыпают.

XVI. ЛИКВИДАЦИЯ И КОНСЕРВАЦИЯ ГОРНЫХ ВЫРАБОТОК ШАХТ

118. Ликвидацию и консервацию горных выработок шахт проводят в соответствии с "Инструкцией о порядке ведения работ по ликвидации и консервации опасных производственных объектов, связанных с пользованием недрами", утвержденной постановлением Госгортехнадзора России от 2 июня 1999 г. N 33 (зарегистрировано Министерством юстиции Российской Федерации 25 июня 1999 г., регистрационный N 1816; Бюллетень нормативных актов федеральных органов исполнительной власти, 1999, N 29) и иными нормативными правовыми актами в области промышленной безопасности, содержащими требования к ликвидации и консервации опасных производственных объектов, связанных с пользованием недрами.

На шахтах, смежных с ликвидируемыми или консервируемыми шахтами, горные работы проводят с соблюдением мер, обеспечивающих безопасность ведения горных работ.

- 119. Устья ликвидированных горных выработок, имеющих выход на земную поверхность, не менее двух раз в год осматривает комиссия, назначенная распорядительным документом руководителя шахты.
- 120. Работы по извлечению крепи из горизонтальных и наклонных горных выработок относят к работам повышенной опасности.

Запрещается извлечение крепи на участке, заполняемом закладочным материалом.

XVII. РУДНИЧНЫЙ ВОЗДУХ И ВЕНТИЛЯЦИОННЫЕ СЕТИ ШАХТ

- 121. Проветривание горных выработок осуществляют таким образом, чтобы все действующие горные выработки были обеспечены расходом воздуха не менее расчетного, а состав, скорость и температура воздуха в них соответствовали Федеральным нормам и правилам в области промышленной безопасности "Инструкция по контролю состава рудничного воздуха, определению газообильности и установлению категорий шахт по метану и (или) диоксиду углерода", утвержденным приказом Ростехнадзора от 6 декабря 2012 г. N 704 (зарегистрирован Министерством юстиции Российской Федерации 8 февраля 2013 г., регистрационный N 26936; Бюллетень нормативных актов федеральных органов исполнительной власти, 2013, N 16) (далее Инструкция по контролю состава рудничного воздуха, определению газообильности и установлению категорий шахт по метану и (или) диоксиду углерода).
- 122. Концентрация кислорода в воздухе в горных выработках, в которых находится или может находиться персонал, должна составлять не менее 20% (по объему).

Содержание метана в рудничном воздухе должно соответствовать нормам, приведенным в приложении N 4 к настоящим Правилам.

Максимально допустимая концентрация диоксида углерода в рудничном воздухе на рабочих местах, в исходящих струях выемочных участков и тупиковых горных выработок составляет 0,5%, в горных выработках с исходящей струей крыла, горизонта и шахты - 0,75%, при проведении и восстановлении горных выработок по завалу - 1%.

Максимально допустимая концентрация водорода в зарядных камерах составляет 0,5%.

Максимально допустимые концентрации вредных газов в рудничном воздухе действующих горных выработок приведены в приложении N 5 к настоящим Правилам.

- 123. При несоответствии состава рудничного воздуха в действующих горных выработках требованиям, установленным настоящими Правилами, работы должны быть прекращены, персонал из этих горных выработок должен выйти в горные выработки с пригодной для дыхания рудничной атмосферой или на поверхность и сообщить об этом горному диспетчеру шахты.
- 124. Максимально допустимые скорости воздуха в горных выработках приведены в приложении N 6 к настоящим Правилам.

Средняя по сечению скорость воздуха в лавах и подготовительных горных выработках шахт должна быть не менее 0,25 m/c.

Минимальная скорость воздуха:

в подготовительных горных выработках, проводимых по угольным пластам мощностью более 2 м, при разности между природной и остаточной метаноносностью пласта на участке их проведения 5 m^3 /т и выше - 0,5 м/с;

в горных выработках, проводимых по пластам, опасным по слоевым скоплениям метана - 1 м/с;

в горных выработках, проводимых по пластам, опасным по внезапным выбросам угля (породы) и газа - 0,5 м/с;

в горных выработках в зонах: повышенного горного давления, влияния геологических нарушений, расщепления угольного пласта - 0,5 м/с;

в горных выработках для шахт Воркутского месторождения - очистных выработках и оконтуривающих выемочных участков горных выработок на участке протяженностью от монтажной камеры, равной шагу первой посадки труднообрушаемой основной кровли пласта - 0,5 м/с;

в лавах шахт опасных по газу - 0,5 м/с;

в подготовительных горных выработках, проводимых по мощным пластам после отработки верхнего слоя, в призабойных пространствах подготовительных горных выработок независимо от мощности оставшейся пачки угля и разности природной и остаточной метаноносности пласта - 0,25 м/с;

при проходке и углубке вертикальных стволов и шурфов, в тупиковых горных выработках негазовых шахт и в остальных горных выработках шахт всех категорий, проветриваемых за счет общешахтной депрессии (компрессии), - 0,15 м/с;

в камерах - не регламентируется.

Максимальная скорость воздуха в стволах, предназначенных для спуска и подъема грузов и используемых при аварии для вывода персонала, составляет 10 м/с.

Работы в горных выработках, скорость движения воздуха в которых превышает максимально допустимые скорости воздуха в горных выработках, приведенные в приложении N 6 к настоящим Правилам, проводят с соблюдением мер, утвержденных техническим руководителям (главным инженером) шахты.

125. Температура воздуха, поступающего в горные выработки шахты, должна быть не ниже 2 °C.

Для шахт, расположенных в зонах многолетней мерзлоты, температуру воздуха, поступающего в шахту, устанавливает технический руководитель (главный инженер) шахты.

126. Объединение шахт с независимым проветриванием в одну вентиляционную систему проводят в соответствии с проектной документацией.

На шахтах, объединенных в одну вентиляционную систему, назначают одного технического руководителя (главного инженера) шахты и создают один участок АБ.

В горных выработках, соединяющих две шахты, необъединенные в одну вентиляционную систему, возводятся вентиляционные устройства, место установки и конструкция которых должны быть определены проектной документацией.

127. Начальник участка АБ составляет вентиляционный план шахты в соответствии с Федеральными нормами и правилами в области промышленной безопасности "Инструкция по составлению вентиляционных планов угольных шахт", утвержденными приказом Ростехнадзора от 6 ноября 2012 г. N 637 (зарегистрирован Министерством юстиции Российской Федерации 29 декабря 2012 г., регистрационный N 26466; Бюллетень нормативных актов федеральных органов исполнительной власти, 2013, N 15).

128. Начальник участка АБ в соответствии с программой развития горных работ рассчитывает расходы воздуха и депрессии, выполняет проверку устойчивости проветривания горных выработок и разрабатывает мероприятия по обеспечению проветривания шахты.

Не реже одного раза в три года на шахте проводят плановую депрессионную съемку. Проведение внеплановых депрессионных съемок определяет технический руководитель (главный инженер) шахты.

129. Отработанные выемочные участки (поля), неиспользуемые горные выработки и скважины изолируют. Места возведения и конструкции сооружений, изолирующих выемочные участки и неиспользуемые горные выработки, утверждает технический руководитель (главный инженер) шахты.

Скважины, предназначенные для борьбы с внезапными выбросами угля (породы) и газа, изоляции не подлежат.

Горные выработки, используемые для отвода метана из выработанных пространств, со стороны действующих горных выработок изолируют взрывоустойчивыми перемычками.

Вскрытие и разгазирование изолированных выемочных участков (полей) и неиспользуемых горных выработок проводят работники $\Pi ACC(\Phi)$ по мероприятиям, согласованным с руководителем $\Pi ACC(\Phi)$ и утвержденным техническим руководителем (главным инженером) шахты.

- 130. Работы в лавах и подготовительных горных выработках, приближающихся к горным выработкам, в которых возможны скопления вредных или горючих газов, выполняют с соблюдением мер, обеспечивающих безопасное ведение горных работ в опасных зонах.
- 131. Способ, схема и система проветривания шахты должны быть определены проектной документацией.

Сбойки между горными выработками, по которым поступает и выдается воздух для проветривания шахты, крыла, блока, панели, изолируют взрывоустойчивыми перемычками.

- 132. Запрещается использовать один и тот же ствол шахты или штольню для одновременного пропуска свежей и исходящей струй воздуха. Это запрещение не распространяется на время проходки стволов (штолен) и околоствольных горных выработок до соединения с другим стволом или вентиляционной сбойкой.
- 133. Запрещается подводить свежий воздух в действующие камеры, лавы и тупиковые горные выработки, а также отводить воздух из них через завалы и обрушения. Это запрещение не распространяется на работы по погашению (восстановлению) горных выработок, а также на случаи изолированного отвода метана из выработанного пространства.

Проветривание погашаемых и восстанавливаемых горных выработок необходимо осуществлять за счет общешахтной депрессии или ВМП.

134. Лава и примыкающие к ней тупиковые горные выработки следует проветривать струей свежего воздуха.

Последовательное проветривание лав (не более двух), расположенных на одном пласте в пределах одного этажа (панели), допускается на пластах, не опасных по внезапным выбросам угля (породы) и газа и (или) не опасных по суфлярным выделениям метана при соблюдении следующих условий:

общая длина лав не должна превышать 400 м;

расстояние между смежными лавами не должно превышать 300 м;

в проветриваемую лаву по прилегающему к ней промежуточному штреку следует подавать дополнительно свежий воздух. При этом расход воздуха должен быть не менее подсчитанного по скорости в промежуточном штреке (0,25 м/c), а в газовых шахтах он должен быть таким, чтобы содержание метана в воздухе, поступающем в вышерасположенную лаву, не превышало 0,5%;

при производстве взрывных работ в нижней лаве, если содержание вредных газов в воздухе, поступающем в вышележащую лаву, превышает 0,008% по объему в пересчете на условный оксид углерода, персонал должен выходить в горные выработки со свежей струей воздуха. В газовых шахтах, а также на шахтах отрабатывающие пласты, опасные по взрывчатости угольной пыли, персонал должен выходить в горные выработки со свежей струей воздуха независимо от содержания вредных газов, образующихся при производстве взрывных работ;

в промежуточном штреке между смежными лавами должны быть оборудованы устройства по осаждению или улавливанию взвешенной пыли;

каждая лава должна иметь телефонную связь.

- 135. Проветривание транспортных горных выработок, оборудованных ленточными конвейерами, предназначенными для транспортирования угля между выемочным участком и околоствольным двором или поверхностью, должно осуществляться обособленной струей свежего воздуха или исходящей струей воздуха.
- 136. Камеры для зарядки аккумуляторных батарей и склады взрывчатых материалов (далее ВМ) следует проветривать обособленной струей свежего воздуха.

Камеры для машин и оборудования, гаражи и склады горюче-смазочных материалов, горные выработки, в которых проводят техническое обслуживание дизельного транспорта, следует проветривать обособленной струей воздуха или струей исходящего воздуха с концентрацией метана не более 0,5%.

На шахтах, опасных по внезапным выбросам угля (породы) и газа, проветривание камер для машин и электрооборудования исходящей струей воздуха запрещается.

XVIII. ВЕНТИЛЯЦИОННЫЕ УСТРОЙСТВА

137. Распределение воздуха в горных выработках шахты при нормальном и аварийном режимах проветривания, предусмотренных ПЛА, осуществляют с помощью вентиляционных устройств.

Вентиляционные устройства, устанавливаемые в горных выработках, соединяющих стволы (подающий и вытяжной), а также предназначенные для предотвращения закорачивания вентиляционных струй, поступающих на крыло, панель, группу выемочных участков, сооружают из негорючих материалов.

Вентиляционные устройства должны иметь блокировку, препятствующую одновременному открыванию дверей, приводящему к закорачиванию вентиляционной струи.

Конструкцию вентиляционных устройств утверждает технический руководитель (главный инженер) шахты.

На газовых шахтах осуществляется автоматический контроль положения дверей вентиляционных шлюзов в соответствии с Положением об аэрогазовом контроле в угольных шахтах, утвержденным приказом Ростехнадзора от 1 декабря 2011 г. N 678 (зарегистрирован Министерством юстиции Российской Федерации 29 декабря 2011 г., регистрационный N 22812; Бюллетень норма-

тивных актов федеральных органов исполнительной власти, 2012, N 14) (далее - Положение об аэрогазовом контроле в угольных шахтах).

На вентиляционных устройствах устанавливают аншлаг с указанием номера сооружения, нормативных и фактических утечек воздуха.

138. Вентиляционные устройства сооружают таким образом, чтобы были обеспечены безопасные расстояния от перевозимого груза до элементов конструкции дверных проемов по высоте не менее 0,5 м, по ширине не менее 0,25 м.

Двери для прохода людей устраивают в проемах размерами не менее 0,7 м шириной и 1,8 м высотой.

Вентиляционные двери оборудуют устройствами, облегчающими их открывание при перепаде давления на вентиляционном устройстве более 50 даПа.

Нормальное положение вентиляционных дверей закрытое.

Запрещается установка вентиляционных сооружений с дверями в наклонных горных выработках, по которым осуществляют доставку напочвенным рельсовым транспортом, не оборудованным устройствами аварийного торможения.

Вентиляционные устройства контролируют специалисты шахты в соответствии с порядком, утвержденным техническим руководителем (главным инженером) шахты.

139. Решение по изменению направления движения и расхода воздуха в горных выработках принимает начальник участка АБ.

Запрещается посменное регулирование воздушных струй.

XIX. ВЕНТИЛЯТОРНЫЕ УСТАНОВКИ

140. Проветривание горных выработок шахты должно быть обеспечено с помощью непрерывно работающих вентиляторных установок - вентиляторов главного проветривания (далее - ВГП) и вспомогательных вентиляторных установок (далее - ВВУ).

Расстояние от зданий ВГП до устьев стволов, шурфов, штолен, скважин должно быть установлено проектной документацией.

ВГП обеспечивают проветривание горных выработок всей шахты или ее части (блок, крыло, панель, горизонт), а также проветривание шахты на период ее строительства после сбойки стволов.

ВВУ обеспечивают проветривание выемочных участков и (или) отдельных горных выработок шахты, и срок их эксплуатации не должен превышать трех лет.

141. ВГП и ВВУ состоят из рабочих и резервных агрегатов одного типоразмера. ВГП и ВВУ обеспечивают подачу в шахту расхода воздуха не менее расчетного.

В ВГП и ВВУ должен быть предусмотрен автоматический запуск вентиляторного агрегата, находящегося в резерве, при остановке одного из работающих агрегатов.

Расход воздуха, поступающего в горные выработки при переходе с рабочего на резервный вентилятор, не должен изменяться более чем на 10%.

На газовых шахтах ВГП и ВВУ должны иметь надежность электроснабжения по первой категории (с автоматическим вводом резерва) и иметь 100% резерв источника питания для собственных нужд.

На негазовых шахтах ВГП могут состоять из одного агрегата с резервным электроприводом.

Вентиляторы оборудуют тормозными или стопорными устройствами, препятствующими самопроизвольному вращению рабочего ротора вентилятора.

142. В ВГП и ВВУ должны быть предусмотрены меры по предупреждению обмерзания проточной части вентиляторов, каналов и переключающих устройств, а также меры по предупреждению попадания в проточную часть вентиляторной установки горной массы и воды. Исключается размещение в вентиляционных каналах посторонних предметов. Вентиляционные каналы оборудуют шлюзовым выходом на поверхность.

В канале ВГП и ВВУ у места сопряжения со стволом (шурфом, скважиной) и перед колесом вентилятора устанавливают ограждающие решетки высотой не менее 1,5 м.

143. ВГП и ВВУ обеспечивают аварийные режимы проветривания горных выработок шахты, предусмотренные ПЛА.

Плановые практические проверки аварийных вентиляционных режимов (реверсирования), предусмотренных ПЛА, проводят в соответствии с Федеральными нормами и правилами в области промышленной безопасности "Инструкция по проведению плановой практической проверки аварийных вентиляционных режимов, предусмотренных планом ликвидации аварий", утвержденными приказом Ростехнадзора от 6 ноября 2012 г. N 638 (зарегистрирован Министерством юстиции Российской Федерации 29 декабря 2012 г., регистрационный N 26461; Бюллетень нормативных актов федеральных органов исполнительной власти, 2013, N 12).

Во время реверсирования в шахте запрещается проводить какие-либо работы, кроме работ по поддержанию жизнеобеспечения шахты.

Перевод ВГП и ВВУ в реверсивный режим работы выполняют не более чем за 10 минут.

Расход воздуха в реверсивном режиме проветривания, проходящего по горным выработкам, при авариях, в которых ПЛА предусмотрено реверсирование вентиляционной струи, должен составлять не менее 60% расхода воздуха, проходящего по ним при нормальном режиме проветривания.

- 144. Исправность реверсивных, переключающих и герметизирующих устройств ВГП и ВВУ проверяют главный механик шахты и начальник участка АБ не реже одного раза в месяц.
- 145. Состояние ВГП и ВВУ проверяет обсуживающий персонал угледобывающей организации ежесуточно. Два раза в месяц состояние ВГП и ВВУ проверяет главный механик шахты и (или) специалист, им определенный. Порядок проведения проверок состояния ВГП и ВВУ определяет главный механик шахты.

Аэродинамическое обследование ВГП и ВВУ специалисты шахты проводят при переходе с одного агрегата на другой и при изменении угла разворота лопаток рабочих колес или направляющего аппарата. Переход с одного агрегата на другой проводят не реже одного раза в месяц.

Ревизию, наладку и аэродинамическое обследование ВГП и ВВУ проводят в соответствии с технической документацией изготовителя и эксплуатационной документацией шахты.

146. ВГП и ВВУ оборудуют аппаратурой дистанционного управления и контроля в соответствии с проектом МФСБ.

ВГП и ВВУ, не оборудованные аппаратурой дистанционного управления и контроля, постоянно обслуживает дежурный машинист. Дежурный машинист контролирует параметры работы ВГП и ВВУ и регистрирует их в порядке, установленном главным механиком шахты.

Здание ВГП и ВВУ оборудуют связью с горным диспетчером шахты. Все изменения режимов работы ВГП и ВВУ фиксирует горный диспетчер шахты.

147. Остановку ВГП и ВВУ, кроме аварийных остановок, изменение режима их работы проводят по письменному распоряжению технического руководителя (главного инженера) шахты. Решение об остановке ВГП технический руководитель (главный инженер) шахты доводит до сведения начальника участка АБ.

При аварийной остановке ВГП и ВВУ горный диспетчер действует в соответствии с ПЛА.

148. Газоотсасывающие установки, обеспечивающие изолированный отвод метана из выработанного пространства (далее - ГОУ), устанавливают и эксплуатируют в соответствии с "Инструкцией по применению схем проветривания выемочных участков шахт с изолированным отводом метана из выработанного пространства с помощью газоотсасывающих установок", утвержденной приказом Ростехнадзора от 1 декабря 2011 г. N 680 (зарегистрирован Министерством юстиции Российской Федерации 29 декабря 2011 г., регистрационный N 22815; Бюллетень нормативных актов федеральных органов исполнительной власти, 2012, N 17).

ХХ. ПРОВЕТРИВАНИЕ ТУПИКОВЫХ ГОРНЫХ ВЫРАБОТОК

149. Проветривание тупиковых горных выработок шахт следует осуществлять непрерывно работающими ВМП или за счет общешахтной депрессии.

Из проводимых тупиковых горных выработок запрещается одновременное проведение других тупиковых горных выработок.

150. В газовых шахтах должен быть организован автоматический контроль работы и телеуправления ВМП.

На газовых шахтах в горных выработках, проветриваемых с помощью ВМП, непрерывный автоматический контроль за параметрами рудничной атмосферы, содержанием пыли и расходом воздуха, контроль и управление работой ВМП организуют в соответствии с Положением об аэрогазовом контроле в угольных шахтах.

На негазовых шахтах по решению технического руководителя (главного инженера) шахты контроль и управление ВМП осуществляют без применения средств автоматики.

На негазовых шахтах по решению технического руководителя (главного инженера) шахты напряжение на электрооборудовании автоматизированных насосных установок, установленных в тупиковых горных выработках, при остановке ВМП, проветривающих эти горные выработки, не отключают.

На газовых шахтах непрерывное проветривание тупиковых горных выработок и реализация функций систем АГК должны быть обеспечены до начала их проведения.

В газовых шахтах тупиковые горные выработки, проветриваемые ВМП, оборудуют резервными ВМП и резервным электропитанием в соответствии с Федеральными нормами и правилами в области промышленной безопасности "Инструкция по электроснабжению и применению электрооборудования в проветриваемых ВМП тупиковых горных выработках шахт, опасных по газу", утвержденными приказом Ростехнадзора от 6 ноября 2012 г. N 628 (зарегистрирован Министерством юстиции Российской Федерации 21 декабря 2012 г., регистрационный N 26228; Бюллетень нормативных актов федеральных органов исполнительной власти, 2013, N 7) (далее - Инструкция

по электроснабжению и применению электрооборудования в проветриваемых ВМП тупиковых горных выработках шахт, опасных по газу).

151. В документацию по ведению горных работ в горных выработках, проветриваемых ВМП, включают расчеты, обосновывающие выбор ВМП, и графическую документацию, содержащую схемы размещения в горных выработках шахты ВМП и технических устройств, обеспечивающих проветривание горной выработки и работу ВМП.

ВМП, работающий на нагнетание, устанавливают в горной выработке со свежей струей воздуха на расстоянии не менее 10 м от исходящей струи.

Запрещается установка ВМП в лавах, кроме случаев проведения обходных горных выработок в зонах местных геологических нарушений при наличии двух выходов из лавы, и ближе 25 м от мест постоянного присутствия персонала (погрузочные пункты, посадочные площадки).

Фактическая производительность ВМП не должна превышать 70% расхода воздуха в горной выработке в месте его установки. При установке в одной горной выработке нескольких ВМП, работающих на отдельные трубопроводы и расположенных один от другого на расстоянии менее 10 м, суммарная их производительность не должна превышать 70% расхода воздуха в горной выработке в месте установки первого ВМП, считая по ходу струи. Если расстояние между ВМП более 10 м, то производительность каждого из ВМП не должна превышать 70% расхода воздуха в горной выработке в месте его установки.

В газовых шахтах запрещается проветривание двух и более тупиковых горных выработок с помощью одного трубопровода с ответвлениями.

По решению технического руководителя (главного инженера) шахты ВМП устанавливают в горной выработке с исходящей струей воздуха, проветриваемой за счет общешахтной депрессии, при условии, что максимальная концентрация метана в месте установки ВМП не превышает 0,5%, состав воздуха соответствует требованиям настоящих Правил. Перед ВМП, установленными в горной выработке с исходящей струей воздуха, обеспечивается контроль концентрации метана системой АГК.

Запрещается установка ВМП в горных выработках, по которым проходит исходящая струя воздуха с пластов, опасных по внезапным выбросам угля (породы) и газа.

Перед ВМП устанавливают аншлаг, содержащий данные о фактическом расходе воздуха в горной выработке в месте установки ВМП, фактической производительности вентилятора, расчетном и фактическом расходе воздуха у забоя тупиковой горной выработки, максимальной длине тупиковой части горной выработки, проветриваемой данной вентиляторной установкой, времени проветривания горной выработки после взрывных работ, дата заполнения аншлага и подпись специалиста шахты, проводившего измерения.

152. При применении ВМП с пневматическим двигателем для проветривания проводимых или погашаемых вентиляционных горных выработок, примыкающих к лаве, необходимо соблюдать следующие меры по обеспечению безопасности ведения горных работ:

ВМП располагают не ближе 15 м от сопряжения с лавой, считая по ходу вентиляционной струи;

длина тупиковой части горной выработки не превышает 30 м;

состав воздуха в месте установки ВМП соответствует требованиям настоящих Правил, а содержание метана в исходящей из тупиковой части горной выработки струе не превышает 1%; конструкция ВМП исключает возможность воспламенения метана при ударах и трении вращающихся частей о корпус вентилятора.

153. Проветривание тупиковых горных выработок организуют таким образом, чтобы расстояние от конца вентиляционного трубопровода до забоя в газовых шахтах не превышало 5 м, а в негазовых - 12 м.

Вентиляционный трубопровод поддерживают в состоянии, обеспечивающем в забое расчетный расход воздуха.

- 154. За счет диффузии организуют проветривание тупиковых горных выработок газовых шахт длиной до 6 м, а негазовых шахт длиной до 10 м.
- 155. Вентиляторные установки для проветривания вертикальных горных выработок, проводимых с поверхности, устанавливают не ближе 20 м от их устья.

Температуру воздуха, поступающего в вертикальные горные выработки, поддерживают более $2\,^{\circ}\mathrm{C}.$

Расстояние от конца вентиляционных труб до забоя проводимой вертикальной горной выработки не превышает 15 м, а во время погрузки грейфером - 20 м.

ХХІ. ТРЕБОВАНИЯ ДЛЯ ШАХТ, ОПАСНЫХ ПО ГАЗУ

156. Шахты, в которых выявлены метан и (или) диоксид углерода и (или) другие вредные и опасные газы, относятся к опасным по выявленному газу (газовые).

Для шахт, опасных по газу, устанавливают категории по газу (метану и (или) диоксиду углерода) в соответствии с приложением N 7 к настоящим Правилам.

При проектировании шахт их категории по газу (метану и (или) диоксиду углерода) устанавливают по природной газоносности угольных пластов, планируемых к отработке.

Для действующих шахт их категории по газу (метану и (или) диоксиду углерода) устанавливают по данным фактического газовыделения в горные выработки в соответствии с Инструкцией по контролю состава рудничного воздуха, определению газообильности и установлению категорий шахт по метану и (или) диоксиду углерода.

- 157. Вскрытие газоносных угольных пластов горными выработками проводят с соблюдением требований Федеральных норм и правил в области промышленной безопасности "Правила безопасности при взрывных работах", утвержденных приказом Федеральной службы по экологическому, технологическому и атомному надзору от 16 декабря 2013 г. N 605 (зарегистрирован Министерством юстиции Российской Федерации 1 апреля 2014 г., регистрационный N 31796), с изменениями, внесенными приказом Федеральной службы по экологическому, технологическому и атомному надзору от 30 ноября 2017 г. N 518 (зарегистрирован Министерством юстиции Российской Федерации 12 апреля 2018 г., регистрационный N 50737) (далее Правила безопасности при взрывных работах), Инструкции по дегазации угольных шахт, утвержденной приказом Ростехнадзора от 1 декабря 2011 г. N 679 (зарегистрирован Министерством юстиции Российской Федерации 29 декабря 2011 г., регистрационный N 22811; Бюллетень нормативных актов федеральных органов исполнительной власти, 2012, N 13) (далее Инструкция по дегазации угольных шахт) и иных нормативных правовых актов, устанавливающих требования по безопасному ведению работ по вскрытию газоносных угольных пластов.
- 158. Допустимая концентрация метана в атмосфере действующих горных выработок и трубопроводах приведена в приложении N 4 к настоящим Правилам.

159. При превышении концентраций метана, приведенных в приложении N 4 к настоящим Правилам, в действующих горных выработках шахты (далее - загазирование) (кроме превышений концентраций метана в местных скоплениях у буровых станков и комбайнов) горные работы в данных горных выработках останавливают, с электрооборудования, за исключением электрооборудования в исполнении рудничное особовзрывобезопасное (далее - PO), снимают напряжение, персонал выходит в незагазированные горные выработки со свежей струей воздуха, в загазированных горных выработках устанавливают знаки, запрещающие в них доступ. Персонал, работающий в горных выработках, в которых произошло загазирование, сообщает о загазировании горному диспетчеру и принимает меры по снижению концентрации метана до установленной нормы.

Разгазирование горных выработок проводят по мероприятиям, разработанным в соответствии с Федеральными нормами правилами в области промышленной безопасности "Инструкция по разгазированию горных выработок, расследованию, учету и предупреждению загазирований", утвержденными приказом Ростехнадзора от 6 ноября 2012 г. N 636 (зарегистрирован Министерством юстиции Российской Федерации 29 декабря 2012 г., регистрационный N 26463; Бюллетень нормативных актов федеральных органов исполнительной власти, 2013, N 13) (далее - Инструкция по разгазированию горных выработок, расследованию, учету и предупреждению загазирований).

При образовании у буровых станков и комбайнов местных скоплений метана работа буровых станков и комбайнов прекращается, напряжение с питающего кабеля отключается. Работа буровых станков и комбайнов возобновляется после снижения концентрации метана менее 1%.

160. В газовых шахтах при углах наклона лавы более 10° движение воздуха в них и во всех горных выработках, по которым проходит исходящая из этих лав вентиляционная струя (кроме горных выработок длиной менее 30 м), должно быть восходящим.

Технический руководитель (главный инженер) шахты принимает решение о нисходящем проветривании лав с углом наклона до 15° при выполнении мер, обеспечивающих безопасное ведение горных работ:

проветривание выемочного участка осуществляют по прямоточной или комбинированной схеме проветривания;

скорость воздуха в лаве составляет не менее 2 м/с;

крепь горных выработок, по которым проходит исходящая из лавы вентиляционная струя, кроме горных выработок, примыкающих к лаве, негорючая или трудногорючая;

в горных выработках, по которым проходит исходящая из лавы вентиляционная струя, устанавливают технические средства системы АГК в соответствии с Положением об аэрогазовом контроле в угольных шахтах.

При отработке пластов, не опасных по внезапным выбросам угля (породы) и газа, выемочными столбами по падению (восстанию) технический руководитель (главный инженер) шахты принимает решение о размещении электрооборудования и кабелей в горных выработках, примыкающих к лавам, с нисходящим движением по ним исходящей вентиляционной струи, при соблюдении мер, обеспечивающих безопасное ведение горных работ:

угол наклона горной выработки с исходящей вентиляционной струей менее 15°;

метановыделение на выемочном участке не превышает 5 м3/мин.;

на выемочный участок не поступает исходящая вентиляционная струя из проводимых подготовительных горных выработок;

крепь горных выработок с нисходящим движением исходящей вентиляционной струи должна быть негорючей или трудногорючей;

сбойки, соединяющие горные выработки с исходящей и свежей вентиляционной струей, закреплены негорючей крепью, и в них сооружены не менее двух пожарных перемычек с рабочими и реверсивными дверями, выполненными из негорючих материалов.

Угол наклона горной выработки определяют по разности высотных отметок сопряжений этой горной выработки с другими горными выработками.

161. Проветривание тупиковых горных выработок газовых шахт, кроме тупиковых горных выработок, примыкающих к лавам, организуют таким образом, чтобы исходящие из них вентиляционные струи не поступали в лавы и тупиковые горные выработки.

По решению технического руководителя (главного инженера) шахты исходящую из подготовительной горной выработки струю воздуха выпускают в горные выработки со свежей струей воздуха, поступающей в лавы и тупиковые горные выработки, при условии, что:

концентрация метана в поступающей в лавы и тупиковые горные выработки струе воздуха не превысит 0,5%;

состав воздуха в поступающей в лавы и тупиковые горные выработки струе соответствует требованиям настоящих Правил;

состав воздуха в поступающей в лавы и тупиковые горные выработки струе контролирует система АКГ.

Из подготовительных горных выработок, проводимых по пластам, опасным по внезапным выбросам угля (породы) и газа или суфлярам, выпуск исходящей вентиляционной струи в вентиляционные струи, проветривающие выемочные участки и подготовительные горные выработки, запрещается.

- 162. При вскрытии газоносных угольных пластов горными выработками при приближении к газоносному пласту проводят бурение разведочных скважин. Места бурения и параметры заложения скважин наносят на маркшейдерскую документацию. При вскрытии газоносных угольных пластов организуют непрерывный контроль содержания метана в месте вскрытия.
- 163. ВМП с электрическими двигателями, проветривающие тупиковую горную выработку, проводимую по пластам, опасным по внезапным выбросам угля (породы) и газа, или по выбросоопасным породам, устанавливают в горных выработках со свежей струей воздуха на расстоянии не менее 150 м от устья тупиковой горной выработки. Порядок расстановки технических средств системы АГК в месте установки ВМП и реализации ее функций определяют в соответствии с Положением об аэрогазовом контроле в угольных шахтах.

ВМП с пневматическими двигателями, проветривающие тупиковую горную выработку, проводимую по пластам, опасным по внезапным выбросам угля (породы) и газа, или по выбросоопасным породам, устанавливают по решению технического руководителя (главного инженера) шахты на расстоянии менее 150 м от устья тупиковой горной выработки при соблюдении требований по расстановке технических средств системы АГК и при условии, что конструкция ВМП с пневматическим двигателем исключает возможность воспламенения метана при фрикционном трении вращающихся частей и корпуса.

164. При остановке ВГП или ВВУ, при нарушении проветривания горных выработок работы в горных выработках, в которых нарушено проветривание, прекращаются, напряжение питания электрооборудования отключают, персонал из них выходит в соответствии с ПЛА в горные выработки со свежей струей воздуха.

При времени остановки ВГП или ВВУ более 30 минут порядок действия находящегося в горных выработках персонала шахты определяет ПЛА.

Решение о возобновлении работ после восстановления нормального режима проветривания горных выработок шахты принимает технический руководитель (главный инженер) шахты после проведения мероприятий по разгазированию горных выработок в соответствии с Инструкцией по разгазированию горных выработок, расследованию, учету и предупреждению загазирований.

Решение о возобновлении электроснабжения шахты после восстановления нормального режима проветривания технический руководитель (главный инженер) шахты принимает после замеров содержания метана специалистами структурных подразделений в местах производства работ, у электрических машин, аппаратов и на расстоянии не менее 20 м от мест их установки во всех прилегающих горных выработках.

- 165. Случаи суфлярного выделения (прорыва) метана в горные выработки подлежат учету в соответствии с Инструкцией по разгазированию горных выработок, расследованию, учету и предупреждению загазирований.
- 166. В газовых шахтах дегазацию проводят в соответствии с постановлением Правительства Российской Федерации от 25 апреля 2011 г. N 315 "О допустимых нормах содержания взрыво-опасных газов (метана) в шахте, угольных пластах и выработанном пространстве, при превышении которых дегазация является обязательной" (Собрание законодательства Российской Федерации, 2011, N 18, ст. 2642).

Порядок проектирования дегазационных работ, оснащения и эксплуатации дегазационных скважин, газопроводов и дегазационных станций (установок), ведения работ по дегазации, выбора схем и способов дегазации источников газовыделения, определения объемов извлекаемого из источников газовыделения метана, контроля параметров каптируемых газовоздушных смесей, расчета газопроводов и выбора вакуум-насосов, проведения вакуумно-газовых съемок, оценки качества герметизации дегазационных скважин должен быть определен проектной документацией, разработанной в соответствии с требованиями Инструкции по дегазации угольных шахт.

- 167. На действующих и ликвидируемых газовых шахтах, кроме шахт, находящихся в районах многолетней мерзлоты, организуют выявление участков земной поверхности, на которых из угольных пластов и вмещающих пород выделяются метан и (или) иные газы (далее шахтные газы). При выявлении участков земной поверхности, на которых выделяются шахтные газы, организуют контроль концентрации метана в зданиях и сооружениях и принимают меры по защите от загазирования зданий и сооружений в порядке, утвержденном техническим руководителем (главным инженером) шахты.
- 168. Шахты, в которых выделяются жидкие и парообразные углеводороды, а также газообразные углеводороды (кроме метана), если содержание последних превышает 10% общего объема горючих газов, относят к шахтам, опасным по нефтегазопроявлениям.

Порядок ведения горных работ на шахтах, опасных по нефтегазопроявлениям, должен быть определен проектной документацией.

При обнаружении в горных выработках шахты, не опасной по нефтегазопроявлениям, запаха нефтепродуктов, не связанного с применяемой технологией, технический руководитель (главный инженер) шахты организует отбор проб рудничного воздуха и определение в нем содержания жидких, парообразных, газообразных углеводородов.

169. На шахтах, в горных выработках которых выделяется сернистый газ или сероводород, в документации по ведению горных работ предусматривают меры по обеспечению безопасности ведения горных работ при выделении в рудничный воздух данных газов.

XXII. ОРГАНИЗАЦИЯ РАБОТ ПО ОБЕСПЫЛИВАНИЮ РУДНИЧНОГО ВОЗДУХА

- 170. В каждой шахте необходимо осуществлять мероприятия по обеспыливанию воздуха.
- 171. Проектная документация на строительство новых и реконструкцию действующих шахт (горизонтов), вскрытие и подготовку блоков, панелей, выемочных полей включает раздел, содержащий выбор комплекса мероприятий и обоснование способов обеспыливания рудничного воздуха. Проекты шахт, разрабатывающих пласты, опасные по взрывам пыли, включают раздел по пылевзрывозащите.

В документации по ведению горных работ указывают способы и меры по обеспыливанию рудничного воздуха и пылевзрывозащите.

- 172. На шахте должна быть определена возможность воспламенения метана от фрикционного трения резцов исполнительных органов горных машин о горные породы (далее фрикционная опасность горных пород). Фрикционную опасность горных пород определяют для каждого выемочного участка при проведении горных выработок, оконтуривающих выемочный участок, в срок не более одного месяца после начала их проведения. Фрикционную опасность горных пород до определения ее в горных выработках, проводимых в пределах подготавливаемого выемочного участка, принимают такой же, как и фрикционная опасность горных пород в смежном выемочном участке, при условии, что горные работы по проведению горных выработок в пределах этих выемочных участков ведутся в аналогичных со смежным участком горно-геологических условиях. Решение об определении фрикционной опасности горных пород при проведении горных выработок и отработке выемочных участков в случаях изменения горно-геологических условий принимает технический руководитель (главный инженер) шахты.
- 173. Технические устройства, при работе которых образуется пыль, оборудуют средствами пылеподавления.

Параметры работы средств пылеподавления должны соответствовать технической документацией изготовителя технических устройств.

Запрещается эксплуатация выемочных и проходческих технических устройств без систем взрывозащитного орошения на пластах, содержащих фрикционно опасные горные породы.

- 174. Давление жидкости на форсунках (оросителях) в системах орошения на погрузочных и перегрузочных пунктах должно быть не менее 0,5 МПа, а давление на форсунках (оросителях) выемочных и проходческих комбайнов должно быть определено проектной документацией.
- 175. Необходимость проведения предварительного увлажнения угля в массиве, выбор технологических схем его проведения и параметров нагнетания жидкости в пласт должно быть определено проектной документацией.
- 176. Приемные бункера, опрокидыватели, устройства для загрузки и разгрузки скипов оборудуют средствами аспирации и очистки воздуха, устройствами для предотвращения просыпания горной массы и выдувания из нее пыли.
- 177. В шахте должен быть организован контроль пылевзрывобезопасности горных выработок.
- 178. Запрещается ведение горных работ при отсутствии или неработающих средствах пылеподавления.

XXIII. ПЫЛЕВЗРЫВОБЕЗОПАСНОСТЬ ПРИ РАЗРАБОТКЕ ПЛАСТОВ, ОПАСНЫХ ПО ВЗРЫВАМ УГОЛЬНОЙ ПЫЛИ

- 179. К опасным по взрывам угольной пыли пластам относят пласты с выходом летучих веществ угля 15% и более, а также пласты угля (кроме антрацитов) с меньшим выходом летучих веществ, взрывчатость пыли которых установлена при проведении лабораторных исследований и испытаний угольной пыли на взрывчатость.
- 180. Нижний предел взрываемости отложившейся угольной пыли и норму осланцевания определяют для каждого шахтопласта.
- 181. В шахтах, разрабатывающих пласты, опасные по взрывам угольной пыли, для локализации и предупреждения взрывов угольной пыли применяют сланцевую пылевзрывозащиту и (или) гидропылевзрывозащиту и (или) комбинированную пылевзрывозащиту (далее способы и средства по предупреждению и локализации взрывов угольной пыли).
- 182. Применяемые в шахтах способы и средства по предупреждению и локализаций взрывов угольной пыли должны быть обоснованы проектной документацией.
- 183. В горных выработках шахты устанавливают средства взрывозащиты, обеспечивающие локализацию взрывов. Установку средств взрывозащиты в горных выработках шахты определяет технический руководитель (главный инженер) шахты в соответствии с Федеральными нормами и правилами в области промышленной безопасности "Инструкция по локализации и предупреждению взрывов пылегазовоздушных смесей в угольных шахтах", утвержденными приказом Ростехнадзора от 6 ноября 2012 г. N 634 (зарегистрирован Министерством юстиции Российской Федерации 25 декабря 2012 г., регистрационный N 26359; Бюллетень нормативных актов федеральных органов исполнительной власти, 2013, N 7).
- 184. Порядок контроля средств взрывозащиты, пылевзрывобезопасности и выполнения мероприятий по предупреждению взрывов угольной пыли устанавливает технический руководитель (главный инженер) шахты.

Средства локализации взрывов метана и угольной пыли с указанием их типа наносят на схему вентиляции шахты.

- 185. В шахтах, разрабатывающих опасные и не опасные по взрывам угольной пыли пласты, в горных выработках шахт, соединяющих опасные и неопасные пласты, осуществляют мероприятия по предупреждению и локализации взрывов угольной пыли.
- 186. При выявлении фактов нахождения горных выработок шахты в пылевзрывоопасном состоянии горные работы в этих горных выработках прекращают, с электрооборудования (за исключением электрооборудования в исполнении РО) снимают напряжение. Технический руководитель (главный инженер) шахты до возобновления горных работ в этих горных выработках принимает меры, обеспечивающие приведение их в пылевзрывобезопасное состояние.

Не допускается ведение работ в горных выработках, в которых не обеспечена пылевзрывозащита.

187. Контроль пылевзрывобезопасности горных выработок в местах интенсивного пылеотложения осуществляют посредством непрерывного мониторинга пылевых отложений переносными и стационарными средствами измерений утвержденного типа, прошедшими поверку, с выводом информации в диспетчерский пункт шахты. До внедрения непрерывного мониторинга должен осуществляться ежесуточный визуальный контроль пылевых отложений.

Порядок включения стационарных средств измерений в систему контроля пылевых отложений и управления пылеподавлением, входящую в состав МФСБ, должен быть определен проектной документацией.

Местами интенсивного пылеотложения являются:

погрузочные пункты лав на крутых (между рабочими и вентиляционными гезенками), пологих и наклонных пластах, погрузочные пункты углеспусков, гезенков и скатов, а также участки откаточных штреков на протяжении не менее 25 м в обе стороны от указанных мест;

участки откаточных выработок на протяжении 25 м в обе стороны от опрокидывателей, участки откаточных штреков, уклонов и бремсбергов на протяжении 25 м от их сопряжения;

подготовительные выработки, проводимые по углю и породе, на протяжении 50 м от их забоев;

конвейерные выработки:

почва и элементы конструкции конвейера;

в районе погрузочных пунктов и на протяжении 25 м от них по направлению вентиляционной струи.

Не реже одного раза в месяц пылевзрывобезопасность горных выработок следует контролировать по результатам лабораторного анализа проб отложившейся в горных выработках угольной пыли.

XXIV. КОНТРОЛЬ РУДНИЧНОЙ АТМОСФЕРЫ

- 188. При контроле рудничной атмосферы измеряют концентрацию метана, кислорода, диоксида углерода и других вредных газов, содержание пыли в рудничном воздухе, расход, температуру и относительную влажность рудничного воздуха.
- 189. Технический руководитель (главный инженер) шахты организует контроль состояния рудничной атмосферы в соответствии с Инструкцией по контролю состава рудничного воздуха, определению газообильности и установлению категорий шахт по метану и/или диоксиду углерода.

При контроле состояния рудничной атмосферы проводят оценку качества рудничного воздуха и соответствия его фактического распределения по горным выработкам шахты распределению, определенному проектной документацией и документацией по ведению горных работ.

Измерения концентрации газов, скорости, температуры и относительной влажности рудничного воздуха выполняют переносными и стационарными средствами измерений утвержденного типа, прошедшими поверку.

- 190. На газовых по метану шахтах у проходческих и выемочных комбайнов должен быть организован контроль содержания метана с помощью приборов, обеспечивающих автоматическое отключение электрической энергии на проходческих и выемочных комбайнах при превышении предаварийных уставок концентрации метана приборов в местах их установки.
- 191. Для контроля состояния рудничной атмосферы в газовых по метану шахтах работники, занятые на работах в горных выработках, должны быть обеспечены сигнализаторами метана, совмещенными с головными светильниками.

В газовых и негазовых шахтах переносными приборами измерений концентрации газов должны быть обеспечены специалисты шахты и подрядных организаций и конкретные работники, определенные начальником технологического участка (его заместителем или помощником), контролирующие состояние рудничной атмосферы в течение смены.

В газовых шахтах работники, занятые на работах в тупиковых горных выработках, лавах и в горных выработках с исходящими вентиляционными струями из выемочных участков, очистных или тупиковых выработок, смесительных камер, крыла шахты, должны быть обеспечены переносными индивидуальными и (или) групповыми приборами измерений концентрации газов.

Сигнализаторы метана, встроенные в шахтные головные светильники, должны сигнализировать о превышении концентрации метана в рудничной атмосфере более 2%.

Результаты замеров метана, кислорода и оксида углерода переносными средствами измерения сохраняют в системе АГК (МФСБ).

Порядок контроля метана, кислорода и оксида углерода переносными средствами измерения определяет технический руководитель (главный инженер) шахты.

- 192. Результаты проверки состава воздуха в горных выработках шахты фиксируют в вентиляционном журнале, оформленном в соответствии с Инструкцией по контролю состава рудничного воздуха, определению газообильности и установлению категорий шахт по метану и (или) диоксиду углерода.
- 193. Порядок измерения расхода воздуха в горных выработках шахты определяет технический руководитель (главный инженер) шахты.

Во всех местах измерения расхода воздуха устанавливают аншлаги, на которых указывают дату проведения измерения, площадь поперечного сечения горной выработки в месте проведения измерения, скорость воздушной струи, расчетный и фактический расходы воздуха.

- 194. В действующих горных выработках шахты в соответствии с проектом АГК устанавливают стационарные технические средства, предназначенные для реализации функций системы АГК. Использование в системе АГК переносных средств измерений должно быть определено проектом АГК.
- 195. Контроль содержания метана при взрывных работах в подземных горных выработках угольных шахт осуществляют в соответствии с Правилами безопасности при взрывных работах.
- 196. Руководители и специалисты шахты при посещении горных выработок шахты выполняют замеры содержания метана, кислорода, оксида и диоксида углерода. При выявлении недопустимого содержания метана, кислорода, оксида и диоксида углерода в горных выработках шахты руководители и специалисты угледобывающей организации действуют в порядке, установленном Инструкцией по разгазированию горных выработок, расследованию, учету и предупреждению загазирований.
- 197. Результаты измерений концентрации метана и диоксида углерода в местах их замера фиксируют в соответствии с Инструкцией по контролю состава рудничного воздуха, определению газообильности и установлению категорий шахт по метану и/или диоксиду углерода, в нарядахпутевках, оформленных в соответствии с порядком выдачи заданий на производство горных работ и порядком допуска работников угледобывающей организации к выполнению нарядов, утвержденных руководителем шахты.

Специалисты структурных подразделений, дающие наряд, и специалист, утверждающий наряд по шахте, должны быть ознакомлены с результатами контроля состояния рудничной атмосферы.

- 198. Загазирования горных выработок подлежат расследованию и учету в соответствии с Инструкцией по разгазированию горных выработок, расследованию, учету и предупреждению загазирований.
- 199. Сведения о превышении допустимой концентрации метана передают в территориальные органы Ростехнадзора и Министерство Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий.

ХХУ. ПЕРЕВОЗКА ПЕРСОНАЛА ПО ГОРИЗОНТАЛЬНЫМ И НАКЛОННЫМ

ГОРНЫМ ВЫРАБОТКАМ

- 200. Перевозку персонала по горным выработкам осуществляют техническими устройствами, предназначенными для этих целей, в соответствии с технической документацией изготовителя.
- 201. При перевозке персонала в пассажирских вагонетках (поездах) по горизонтальным горным выработкам с рельсовым транспортом скорость движения не должна превышать 20 км/ч.

В грузовой состав может быть включена одна пассажирская вагонетка для внутрисменной перевозки, которая располагается за локомотивом в голове состава. Скорость грузового состава с пассажирской вагонеткой при перевозке в ней персонала не должна превышать 12 км/ч. Запрещается прицеплять к пассажирской вагонетке платформы с материалами и оборудованием, а также вагонетки, перевозящие груз, размеры которого превышают габариты.

202. Ежесменно перед началом перевозки персонала машинист локомотива осматривает исправность вагонеток, сцепных и сигнальных устройств, полускатов и тормозов. О результатах осмотра машинист докладывает лицу сменного надзора. Разрешение на перевозку персонала дает лицо сменного надзора с записью в путевом листе машиниста локомотива.

Еженедельно пассажирские вагонетки осматривает специалист (механик) структурного подразделения.

- 203. У вагонеток, используемых для перевозки персонала по двухпутным горным выработкам, а также по горным выработкам, в которых посадочные площадки расположены с одной стороны, проемы с нерабочей стороны и междупутья закрывают наглухо.
- 204. При перевозке персонала по наклонным горным выработкам с рельсовым транспортом применяют технические устройства, обеспечивающие плавную остановку поезда (вагонетки) при превышении на 25% установленной скорости, обрыве каната, прицепного устройства или сцепки с возможностью проведения проверки его работоспособности от ручного привода.
- 205. Ежесменно перед началом перевозки персонала по наклонным горным выработкам вагонетки, парашютные, прицепные устройства и крепление каната к вагонеткам осматривает обслуживающий персонал. Результаты осмотров фиксируют в порядке, установленном угледобывающей организацией.

Ежесуточно осмотр указанного оборудования и проверку парашютных устройств выполняет включением ручного привода специалист структурного подразделения. Такую же проверку один раз в месяц выполняет главный механик шахты или лицо, его замещающее.

Результаты осмотров заносят в книгу осмотра подъемной установки.

- 206. Испытания парашютов проводят в соответствии с технической документацией изготовителя при вводе в эксплуатацию вагонеток и один раз в шесть месяцев.
- 207. При перевозке персонала по наклонным горным выработкам вагонетки соединяют между собой двойными сцепками, а на первой по направлению движения поезда вагонетке устанавливают световой сигнал красного цвета.
- 208. Запрещается в одной наклонной горной выработке одновременная работа технических устройств спуска (подъема) людей и средств рельсового транспорта для спуска (подъема) грузов (кроме случаев ремонта этих горных выработок).

Использование одной технической установки для спуска и подъема людей и грузов разрешается только в том случае, если при этом не производят смену (перецепку) подъемных сосудов (вагонеток).

- 209. В наклонных горных выработках, оборудованных рельсовым транспортом, предназначенным для перевозки персонала и грузов, крепь и пути ежесуточно осматривает лицо, назначенное распорядительным документом руководителя шахты. Результаты осмотров фиксируют в установленном на шахте порядке. Перед перевозкой персонала пассажирские вагонетки пропускают один раз по горной выработке в оба конца без присутствия в них персонала.
- 210. Распорядительным документом по шахте назначают лиц, ответственных за организацию перевозки людей по наклонным горным выработкам.

211. Запрещается:

перевозка персонала по горным выработкам транспортными средствами, не предназначенными для этих целей;

перевозка в поездах с персоналом инструментов и запасных частей, выступающих за борт вагонеток, взрывчатых, легковоспламеняющихся и едких материалов;

прицепка грузовых вагонеток к составам поездов, перевозящих персонал;

нахождение персонала между вагонетками во время движения состава.

212. Машинист электровоза принимает решение о перевозке персонала в электровозе при условии, что электровоз имеет вторую кабину или в кабине машиниста есть второе сиденье.

Для перевозки инструментов по горизонтальным горным выработкам в конце состава прицепляют не более двух вагонеток.

- 213. Перевозку персонала по подземным горным выработкам ленточными конвейерами осуществляют в порядке, утвержденном руководителем шахты.
- 214. Эксплуатацию подвесных канатно-кресельных, монорельсовых и напочвенных дорог осуществляют в соответствии с проектами.
- 215. В местах посадки людей на подвижной состав монорельсовых дорог должен быть проход шириной не менее 1 м со стороны посадки.

Для посадочных площадок, периодически переносимых в процессе эксплуатации, допускается уменьшение ширины прохода до 0,7 м.

- 216. Посадочные площадки должны быть оборудованы настилами с таким расчетом, чтобы расстояние между днищем пассажирской кабины (платформы) и настилом составляло от 0,2 до 0,4 м. Длина настила должна быть не менее длины пассажирской части состава.
- 217. Посадочные площадки и горные выработки для монорельсовых дорог освещают в соответствии с действующими нормами.
- 218. Посадочные площадки должны быть оборудованы телефонной связью, включенной в общешахтную сеть.
- 219. При перевозке персонала по горизонтальным и наклонным горным выработкам машинист должен находиться в кабине управления, расположенной в голове поезда.
- 220. При выполнении пассажирских рейсов допускается иметь в составе грузовые тележки для перевозки ручного инструмента. Перевозка людей на грузовых тележках запрещается.

- 221. Выполнение пассажирских рейсов в конвейеризированных горных выработках с углами наклона более 10° и грузовых рейсов в горных выработках с углами наклона более 18° допускается только при выключенном конвейере.
- 222. Скорость движения составов монорельсовых дизельных дорог должна быть не более 2 м/с.

При перевозке длинномерных и крупногабаритных грузов скорость движения составов монорельсовых дизельных дорог должна быть не более 1 м/с.

- 223. На посадочных площадках должны быть вывешены объявления с указанием кода применяемых сигналов, общего количества посадочных мест в составе, фамилии и должности лица, ответственного за перевозку людей.
- 224. Перевозимые рельсовой напочвенной дорогой люди, в том числе управляющие ею и сопровождающие груз, должны находиться в специальных пассажирских кабинах, расположение которых в составе и способ установки на грузонесущих тележках должны быть определены документацией на установку рельсовой напочвенной дороги в горных выработках шахты.

Пешее сопровождение груза не допускается.

225. Запрещается:

перевозить людей рельсовой напочвенной дорогой в составах с грузом. Это запрещение не распространяется на персонал, управляющий рельсовой напочвенной дорогой и сопровождающий груз;

управлять рельсовой напочвенной дорогой лицам, не имеющим соответствующей квалификации;

перевозить людей на грузовых тележках (вагонетках);

эксплуатировать напочвенные дороги в горных выработках с неисправной крепью и при отсутствии требуемых зазоров по сечению горной выработки, а также при неисправности пути, подвижного состава, тормозных систем, аппаратуры управления, сигнализации и средств связи;

прицеплять платформы с длинномерными материалами или с крупногабаритным оборудованием за или перед кабиной состава рельсовой напочвенной дороги, в которой находится персонал;

передвижение персонала по наклонной горной выработке во время работы напочвенной дороги.

XXVI. ПЕРЕВОЗКА ГРУЗОВ ПО ГОРИЗОНТАЛЬНЫМ И НАКЛОННЫМ ГОРНЫМ ВЫРАБОТКАМ

226. Запрещается использовать для перевозки грузов технические устройства (транспортные единицы секционных поездов, монорельсовых и напочвенных дорог) с:

неисправными полускатами (расшатанными колесами, недостающими крепежными болтами и валиками, изогнутыми осями колесных пар и трещинами на осях, глубокими выбоинами на колесах);

неисправными сцепками, серьгами и другими тяговыми частями, а также со сцепками, изношенными сверх допустимых норм;

неисправными буферами и тормозами;

неисправными запорными механизмами и неплотно прилегающими днищами вагонеток (секционных поездов) с разгрузкой через дно;

деформированными или разрушенными подвагонными упорами;

разрушенными или выгнутыми наружу более чем на 50 мм стенками кузовов вагонеток;

неисправными межсекционными перекрытиями секционных поездов.

227. Запрещается:

проталкивать несцепленные составы, прицеплять непосредственно к локомотиву платформы или вагонетки с длинномерными материалами, а также платформы и вагонетки, груженные лесом или оборудованием, выступающим за верхний габарит транспортных средств;

сцеплять и расцеплять вагонетки вручную во время движения состава, а также сцеплять и расцеплять крюковые сцепки без применения специальных приспособлений;

сцеплять и расцеплять вагонетки в наклонных горных выработках, в горных выработках с самокатным уклоном и на закруглениях;

оставлять подвижной состав на участках горных выработок, имеющих самокатный уклон;

формировать состав из вагонеток со сцепками разных типов;

проталкивать состав локомотивами с помощью стоек, распилов, досок, а также локомотивом, движущимся по параллельному пути;

сцеплять и расцеплять вагонетки на расстоянии ближе 5 м от опрокидывателей, вентиляционных дверей или других препятствий;

применять для затормаживания и удержания подвижного состава подручные средства;

оставлять вагоны, составы или локомотивы на разминовках ближе 4 м от рамного рельса стрелочного перевода.

Места остановки подвижного состава обозначают соответствующими знаками.

- 228. При доставке длинномерных материалов и оборудования в составах необходимо применять предназначенные для этих целей вагонетки или платформы, сцепленные между собой жесткими сцепками. Длину жесткой сцепки выбирают с таким расчетом, чтобы между находящимся на смежных платформах длинномерным материалом или оборудованием выдерживалось расстояние не менее 300 мм.
- 229. На стационарных погрузочных пунктах и около опрокидывателей применяют технические устройства, обеспечивающие передвижение вагонеток (далее толкатель). Управление толкателями осуществляют из пунктов, расположенных в нишах или других местах, безопасных для обслуживающего персонала, при наличии блокировки, препятствующей одновременному включению опрокидывателя и толкателя.

На других погрузочных пунктах допускается применение лебедок или локомотивов.

230. При откатке техническими устройствами с канатным приводом по наклонным горным выработкам технические устройства должны быть оборудованы приспособлениями, препятствующими скатыванию вагонеток на нижние и промежуточные приемные площадки при обрыве каната, прицепного устройства или сцепки:

на верхних приемных площадках наклонных горных выработок с горизонтальными заездами устанавливают задерживающие стопоры;

выше нижних приемных площадок устанавливают предохранительные барьеры, оборудованные амортизирующими техническими устройствами с автоматическим или дистанционным управлением. До оборудования наклонных горных выработок амортизирующими барьерами применяются съемные ловители вагонеток или предохранительные канаты и жесткие барьеры с дистанционным управлением. В горных выработках с углом наклона до 10° при небольшом количестве вагонеток в составе (одна - две) допускается иметь барьеры жесткого типа;

ниже верхних приемных площадок, а также в заездах промежуточных горных выработок могут быть установлены барьеры с дистанционным управлением жесткого типа, прочность которых определяют расчетом. В горных выработках длиной до 30 м, предназначенных для транспортирования вспомогательных материалов и оборудования, допускается применение барьеров с ручным управлением.

На нижних и промежуточных приемных площадках горизонтальных участков горных выработок устраивают ниши для укрытия работающих и размещения пультов управления и связи.

Требования настоящего раздела не распространяются на наклонные горные выработки, используемые для перевозки людей в людских и грузолюдских транспортных средствах, оборудованных парашютными устройствами.

231. Запрещается подъем и передвижение людей по наклонным горным выработкам во время работы технологического оборудования при подъеме и спуске грузов.

При пересечении промежуточных штреков с бремсбергами, уклонами и наклонными стволами в штреках устанавливают барьеры, световые табло и предупреждающие знаки.

- 232. Запрещается во время работы технологического оборудования для перемещения грузов выход на площадки, на которых проводят сцепку и расцепку вагонеток, лицам, не участвующим в этой работе. Площадки ограждаются запрещающими знаками.
- 233. Постановка на рельсы сошедших с них средств рельсового транспорта осуществляют под руководством специалиста структурного подразделения с соблюдением мер, обеспечивающих безопасность ведения работ, утвержденных техническим руководителем (главным инженером) шахты.
- 234. При ручной подкатке на передней наружной стенке вагонетки подвешивают включенный светильник белого цвета. Расстояние между вагонетками при ручной подкатке не менее 10 м на путях с уклоном до 5% и не менее 30 м на путях с большим уклоном. При уклонах более 10% ручная подкатка запрещается.
- 235. При перемещении вагонеток (платформ) бесконечным и концевым канатами применяют сцепные и прицепные технические устройства, не допускающие самопроизвольного расцепления, а при перемещении грузов бесконечным канатом в горных выработках с углом наклона более 18° применяют контрканаты.
- 236. Запрещается изготовление в угледобывающих организациях сцепок вагонеток, прицепных технических устройств для перемещения грузов концевыми и бесконечными канатами, а также локомотивных сцепок.
- 237. Выполнение грузовых рейсов техническими устройствами по подвесным монорельсовым дорогам при работающем конвейере в горных выработках с углами наклона от 10 до 18° допускается при условии оборудования конвейера ловителями ленты или устройствами контроля целостности тросов (для резинотросовых лент).

Выполнение грузовых рейсов в горных выработках с углами наклона свыше 18° допускается только при выключенном конвейере.

238. Для выполнения маневровых работ и откатки вагонеток в горизонтальных горных выработках с уклоном до 5% допускается применение лебедок, имеющих скорость до 1 м/с.

Для транспортирования материалов и оборудования, а также для выдачи породы при ремонте крепи в наклонных горных выработках могут быть применены лебедки, отвечающие следующим требованиям:

отношение диаметра барабана (шкива) к диаметру каната не менее 20. Допускается многослойная навивка каната на барабан;

скорость движения каната на среднем радиусе навивки не должна превышать 1,8 м/с;

лебедки оборудованы двумя тормозами, один из которых воздействует на барабан (шкив). Каждый из тормозов обеспечивает при заторможенном состоянии привода не менее чем 2-кратное отношение величины тормозного момента к статическому;

на лебедках предусмотрено автоматическое включение (срабатывание) предохранительных тормозов при прекращении подачи электроэнергии.

XXVII. ПЕРЕДВИЖЕНИЕ И ПЕРЕВОЗКА ПЕРСОНАЛА И ГРУЗОВ ПО ВЕРТИКАЛЬНЫМ ГОРНЫМ ВЫРАБОТКАМ

- 239. Передвижение персонала по вертикальным горным выработкам осуществляют в клетях. При проходке, углубке, сбойке вертикальных горных выработок и их армировании передвижение персонала можно проводить в бадьях.
- 240. Клети, служащие для спуска и подъема персонала, должны иметь сплошные металлические открывающиеся крыши или крыши с открывающимся лазом, а также сплошной пол. Пол вновь создаваемых клетей не должен иметь выступающих частей. Длинные стороны (бока) клетей обшивают на полную высоту металлическими листами. Запрещается эксплуатация клетей с отверстиями в боковых сторонах в зонах на расстоянии до 0,5 м от оси проводников в обе стороны. Вдоль длинных сторон клетей устанавливают поручни. С коротких (торцевых) сторон клети устанавливают двери или другие ограждающие приспособления, предотвращающие возможность выпадения персонала из клети. Конструкция дверей не должна допускать их соскакивания при движении клети.

Двери открываются внутрь клети и закрываются засовом, расположенным снаружи. Высота верхней кромки двери или других ограждений над уровнем пола клети составляет не менее 1,2 м, нижней кромки - не более 150 мм.

Клети оборудуют стопорами, обеспечивающими удержание вагонеток при движении клети по стволу. Число лиц, находящихся одновременно на каждом этаже клети, определяют из расчета пять человек на 1 м2 пола.

241. Клети для перемещения персонала и противовесы людских и грузолюдских подъемных установок снабжают техническими устройствами (парашютами) для плавного торможения и остановки их в случае обрыва подъемных канатов. Приводную пружину парашюта клети ограждают предохранительным кожухом.

Допускается отсутствие парашютов на клетях и противовесах многоканатных подъемных установок с числом канатов четыре и более; клетях и противовесах двух- и трехканатных подъемных установок; клетях и противовесах аварийно-ремонтных и грузовых подъемных установок; противовесах действующих наклонных подъемных установок; противовесах действующих подъемных установок; противовесах действующих

емных установок вертикальных стволов, если отделения клети и противовеса отделены друг от друга перегородкой из рельсов или канатами. Разрешается отсутствие перегородки, если высота рамы противовеса превышает два шага армировки при двухстороннем и шаг армировки при одностороннем расположении проводников. Противовес в этом случае также оборудуют предохранительными башмаками длиной не менее 400 мм.

Замедление при торможении порожних клетей парашютами не должно превышает 50 м/с2, при торможении клетей с максимальным числом людей - не менее 6 м/с2.

Испытания парашютов следует проводить не реже одного раза в шесть месяцев в соответствии с технической документацией завода-изготовителя.

Парашютные устройства заменяют новыми вместе с заменой клети, за исключением парашютов с тормозными канатами, которые заменяют не реже чем через пять лет со дня навески.

Допускается продление срока службы парашютов с тормозными канатами на два года. Решение о продлении срока службы принимает комиссия, возглавляемая главным механиком шахты, при положительных результатах дефектоскопии, полученных при выполнении работ по ревизии и наладке подъемных установок, износе шарнирных соединений, не превышающем указанного в технической документации завода-изготовителя, и удовлетворительных результатах испытаний парашютов.

Пружины парашютов подлежат замене в соответствии с технической документацией завода-изготовителя.

242. При перемещении персонала в бадьях:

бадьи двигаются по направляющим. Движение бадей без направляющих допускается на расстоянии не более 20 м от забоя. При использовании на проходке вертикальных горных выработок проходческих агрегатов (погрузочных машин, грейферов) расстояние может быть увеличено до 40 м;

запрещается перемещение персонала в бадьях без направляющих рамок и зонтов. Направляющую рамку оборудуют сигнализацией о ее зависании.

При выполнении аварийных работ в стволе допускается перемещение персонала в бадьях без направляющих рамок, при этом:

скорость движения бадьи по стволу не превышает 0,3 м/с;

зазоры между кромкой бадьи и выступающими конструкциями элементов ствола не менее 400 мм;

над бадьей устанавливают предохранительный зонт;

направляющую рамку надежно закрепляют на разгрузочной площадке, а разгрузочные ляды закрыты;

посадку персонала в бадьи и выход из них выполняют на нижней приемной площадке по лестнице или ступеням бадьи при закрытых лядах и остановленной бадье;

посадку персонала в бадьи и выход из них на промежуточных горизонтах выполняют с откидных площадок, а на полках и натяжных рамах только тогда, когда борт остановленной бадьи находится на уровне раструба или пола этажа при наличии дверей в раструбе;

запрещается подниматься или опускаться стоя или сидя на краю бадьи и в груженой бадье.

При перемещении грузов бадью недогружают на 100 мм до верхнего края борта. Запрещается пользоваться бадьей без устройства для поддержания дужки в опущенном состоянии (кулачков). Высота кулачков не менее 40 мм.

При перемещении грузов и персонала в бадьях проходческие подъемные установки оборудуют блокировочными устройствами, исключающими прохождение бадьи через раструб в нижнем полке, когда под раструбом находится погрузочное устройство.

243. Запрещается перемещение персонала в скипах и грузовых клетях, за исключением случаев осмотра и ремонта ствола, проведения маркшейдерских работ и аварийных случаев.

Перемещение персонала в опрокидных клетях разрешается при наличии блокировок, гарантирующих невозможность опрокидывания персонала в бункер, а также опрокидывания клети при движении по стволу.

Запрещается перемещение персонала в клетях, загруженных полностью или частично грузом, за исключением выполнения ремонтных работ.

В случае расположения в одном стволе грузолюдского и грузового подъемов работа последнего при спуске-подъеме людей запрещается.

244. Осмотр и ремонт ствола проводят с крыши клети или с оборудованной на скипе или противовесе смотровой площадки. Площадь площадки не менее 0,6 м2 при одном из линейных размеров не менее 0,4 м. Высота ограждения площадки не менее 1,2 м. Для предотвращения падения с высоты персонал, находящийся на крыше клети или смотровой площадке, использует предохранительные пояса. Над крышей клети или над смотровой площадкой оборудуют перекрытия, защищающие персонал от падающих предметов.

Во время ремонта (осмотра) ствола на подъемном сосуде и внутри него могут находиться только лица, занятые на этих работах.

Для осмотра и ремонта участков крепи и армировки, отдаленных от подъемных сосудов, применяют откидные полки (съемные).

На подъемных установках с противовесами осмотр и ремонт ствола проводят с использованием уравнительного груза в подъемном сосуде.

XXVIII. НАПОЧВЕННЫЙ РЕЛЬСОВЫЙ ПУТЬ

245. Радиусы закругления рельсовых путей и переводных кривых во вновь вводимых горных выработках для колеи 600 мм должны быть не менее 12 м, а для колеи 900 мм - не менее 20 м.

На сопряжении горных выработок, не предназначенных для локомотивной откатки, допускается закругление радиусом не менее 4-кратной наибольшей жесткой базы подвижного состава.

Радиус закруглений рельсовых путей с колеей 600 мм в действующих горных выработках не должен быть менее 8 м, а для рельсовых путей с колеей 900 мм - менее 12 м.

- 246. Максимальное расширение пути при укладке 4 мм, а сужение 2 мм по сравнению с номинальной шириной рельсовой колеи. Максимальное расширение рельсовой колеи в процессе эксплуатации: 15 мм на прямолинейных участках и 10 мм на криволинейных участках.
 - 247. Запрещается эксплуатация рельсовых путей при:

износе головки рельса по вертикали более 12 мм для рельсов типа P-24, 16 мм - для рельсов типа P-33 и 20 мм - для рельсов типа P-38;

касании ребордой колеса головок болтов;

наличии продольных и поперечных трещин в рельсах, выкрашивании головки рельсов, откалывании части подошвы рельса;

не закрепленных рельсах к шпалам;

зазорах на стыках рельсов более 5 мм;

отклонении рельсов от оси пути на стыках (излом) более 50 мм на длине рельса менее 8 м.

248. Запрещается эксплуатация стрелочных переводов при:

сбитых, выкрошенных и изогнутых в продольном и поперечном направлениях остряках (перьях);

разъединенных стрелочных тягах;

замыкании стрелок с зазором более 4 мм между прижатым остряком (пером) и рамным рельсом;

отсутствии фиксации положения стрелочных переводов с помощью фиксаторов;

открытых канавках для тяг приводов стрелочных переводов.

- 249. Механические и ручные приводы стрелочных переводов откаточных путей устанавливают со стороны людского прохода так, чтобы обеспечить свободное расстояние не менее 0,7 м от наиболее выступающей части привода до кромки подвижного состава.
- 250. Стрелочные переводы в околоствольных дворах и на пересечениях главных откаточных горных выработок (между собой и с участковыми горными выработками) оснащают дистанционным управлением из кабины движущегося электровоза (локомотива). На заездах наклонных откаточных горных выработок стрелочные переводы оснащают дистанционным управлением. Это требование не распространяется на эпизодически используемые стрелочные переводы, устанавливаемые на въездах в гаражи, центральную подземную подстанцию (далее ЦПП), водоотливные камеры, склады ВМ.
- 251. Временные гаражи для ремонта локомотивов на поверхности оборудуют на тупиковых путях на расстоянии не менее 30 м от ствола.

На рельсовых путях, соединяющих гаражи локомотивов со стволами, устанавливают постоянно закрытые барьеры.

252. Путь, путевые устройства, водоотводные канавы, стрелочные переводы, путевые сигналы и знаки, зазоры и проходы на горизонтальных и наклонных горных выработках, а также контактная сеть электровозной откатки проверяет лицо, назначенное распорядительным документом руководителя угледобывающей организации, не менее двух раз в месяц, в соответствии с графиком, утвержденным техническим руководителем (главным инженером) шахты. При осмотрах замеряют ширину рельсовой колеи и превышение одного рельса над другим.

Не реже одного раза в год служба главного маркшейдера угледобывающей организации проводит проверку износа рельсов и нивелирование профиля откаточных путей.

ХХІХ. ЛОКОМОТИВНАЯ ОТКАТКА

- 253. Локомотивную откатку организуют в горизонтальных горных выработках с углом наклона не более 5%. Откатку локомотивами в горных выработках с уклоном до 5% проводят в порядке, утвержденном руководителем угледобывающей организации.
- 254. Допускается совмещение локомотивной откатки в горных выработках, оборудованных конвейерным транспортом для обслуживания и ремонта конвейеров и горных выработок при условии их раздельной работы.
- 255. Расстояние, которое проходит состав с момента воздействия машиниста на орган управления тормозной системой до полной остановки состава (тормозной путь), на максимальном уклоне горной выработки не должно превышать: при перевозке грузов 40 м, при перевозке персонала 20 м.
- 256. Локомотив во время движения должен находиться в голове состава. Нахождение локомотива в хвосте состава разрешается только при маневровых операциях, выполняемых на участке протяженностью не более 300 м при скорости движения не более 2 м/с.

Заталкивание составов вагонеток к забою при проведении однопутных подготовительных горных выработок разрешается на расстояние не более 400 м.

257. Для светового обозначения поезда на последней вагонетке устанавливают светильник с красным светом. При движении локомотива без вагонеток светильник с красным светом устанавливают на задней (по ходу) части локомотива при отсутствии на ней фары с красным светом.

При нахождении локомотива в хвосте состава на передней стенке первой по ходу движения вагонетки подвешивают включенный светильник с белым светом.

- 258. Запрещаются движение своим ходом аккумуляторных электровозов, не имеющих крыши над кабиной, и их буксировка с машинистом в кабине на участках рельсового пути под контактным проводом, находящимся под электрическим напряжением.
- 259. Между загрузочным устройством и локомотивом с кабиной без крыши обеспечивается зазор по высоте не менее 0,4 м.
 - 260. Запрещается эксплуатация локомотивов при:

нарушении взрывобезопасности оборудования на локомотивах;

снятой крышке батарейного ящика аккумуляторного электровоза или неисправном ее блокировочном устройстве;

неисправности электрооборудования, блокировочных устройств и средств защиты, скоростемеров;

неисправных или неотрегулированных тормозах;

неисправности песочниц или отсутствии песка в них;

неисправности сцепных устройств;

неисправности буферов;

изношенных более чем на 2/3 толщины колодках и прокате бандажей более 10 мм;

несветящихся или неисправных фарах;

неисправности сигнальных устройств.

- 261. Управление локомотивом должен выполнять машинист, находящийся в кабине локомотива. Запрещено передавать управление локомотивом другому лицу и выполнять ручные операции по сцепке и расцепке локомотива с составом из кабины.
 - 262. Локомотив, находящийся в эксплуатации, осматривают в следующие сроки:

ежесменно - машинист при приемке локомотива;

при выпуске локомотива на линию - дежурный электрослесарь;

еженедельно - начальник электровозного депо или механик структурного подразделения шахтного транспорта;

один раз в квартал - руководитель энергомеханической службы угледобывающей организации совместно с механиком структурного подразделения шахтного транспорта.

Результаты ежесменных осмотров фиксируют в путевом листе, а других видов осмотров - в книге осмотра локомотива.

Ежегодно проводят технический осмотр локомотивов в соответствии с положением, разработанным в угледобывающей организации.

ХХХ. КОНТАКТНАЯ СЕТЬ. ЗАРЯДКА АККУМУЛЯТОРНЫХ БАТАРЕЙ

263. Для откатки контактными электровозами допускается применение постоянного тока напряжением не выше 600 В.

Контактную сеть постоянного тока в подземных горных выработках выполняют по проекту.

- 264. В тяговых подстанциях и зарядных установках электровозной откатки осуществляется защита без выдержки времени от перегрузки, токов утечки на землю и короткого замыкания в преобразователях, трансформаторах и отходящих присоединениях, питающих контактную сеть.
- 265. При контактной откатке для уменьшения сопротивления на рельсовых путях устанавливают электрические соединители.
- 266. На шахтах, где проводят электровзрывание, все рельсовые пути, не предназначенные для откатки контактными электровозами, в местах соприкосновения с токоведущими рельсами электрически изолируются от последних в двух точках, отстоящих одна от другой на расстоянии максимально возможной длины состава.
 - 267. Минимальная высота подвески контактного провода от головки рельса должна быть:
- в горных выработках околоствольного двора на участках передвижения персонала до места посадки 2,2 м;
- в горных выработках околоствольного двора, на посадочных и погрузочно-разгрузочных площадках, на пересечении горных выработок, по которым передвигается персонал, с горными выработками, в которых подвешен контактный провод, 2 м;

во всех остальных горных выработках при наличии механизированной перевозки персонала или отдельных горных выработках (отделений) для передвижения персонала - 1,8 м.

268. Минимальное расстояние от контактного провода до верхняка крепи горной выработки - 0,2 м.

Минимальное расстояние от токоприемника электровоза до крепи горной выработки - 0,2 м.

- 269. На время спуска и подъема персонала контактный провод отключается на участке от ствола до посадочного пункта, расположенного в околоствольном дворе.
- 270. На территории промышленной площадки подвеску контактного провода выполняют на высоте не менее 2,2 м от уровня головки рельса при условии, что откаточные пути не пересекают проезжих и пешеходных дорог.
- 271. Контактная сеть секционируется выключателями, расстояние между которыми не превышает 500 м. Секционные выключатели устанавливают также на всех ответвлениях контактного провода.

В контактных сетях двухколейных и многоколейных участков допускается параллельное соединение контактных проводов с помощью выключателей.

До разработки секционных выключателей допускается применение секционных разъединителей и автоматических выключателей, используемых в сетях переменного тока.

При электроснабжении контактной сети от нескольких подстанций каждый ее участок, подключенный от отдельной подстанции, изолируют от других.

272. Контактный провод в местах ремонта горных выработок, выгрузки (погрузки) длинномерных материалов на посадочных площадках отключают на время выполнения этих работ и посадки (высадки) персонала.

На погрузочных пунктах, посадочных, погрузочно-разгрузочных площадках и пересечениях горных выработок, по которым передвигается персонал, а также в местах выхода из лав, печей и других горных выработок предусматривают средства отключения участка контактного провода.

Места пересечения контактного провода с канатами, кабелями, трубами должны исключать возможность их соприкосновения. Схемы указанных пересечений утверждает технический руководитель (главный инженер) шахты.

273. Заряжание аккумуляторных батарей осуществляют в зарядных камерах на зарядных столах.

При подготовке новых горизонтов допускается производить заряжание аккумуляторных батарей на раме электровоза во временных камерах.

Во время заряжания аккумуляторных батарей крышку батарейного ящика снимают.

Аккумуляторы и батарейный ящик разрешается закрывать только после прекращения газовыделения из аккумуляторов, но не раньше чем через час после окончания заряжания.

Батарейный ящик во время заряжания батареи заземляют.

Запрещается заряжать и использовать по назначению неисправные или загрязненные аккумуляторные батареи.

Минимально допустимые величины сопротивления изоляции электрооборудования и кабелей относительно корпуса электровоза и периодичность их проверки принимают в соответствии с технической документацией изготовителей электровозов.

Контроль сопротивления изоляции при заряжании аккумуляторных батарей в шахтах осуществляется реле контроля утечки тока, встроенного в зарядное устройство, а на линии - устройствами контроля сопротивления изоляции, находящимися в автоматических выключателях на аккумуляторных электровозах.

Перед выпуском взрывобезопасного электровоза на линию проводят измерение содержания водорода в батарейном ящике, максимальная допустимая концентрация которого 2,5%.

В зарядных камерах газовых шахт допускается использование аккумуляторных пробников общего назначения при условии измерения напряжения не ранее чем через 10 минут после снятия крышки с батарейного ящика.

- 274. В шахтах, опасных по газу и пыли, ремонт аккумуляторных электровозов, связанный со вскрытием электрооборудования, проводят только в электровозном депо.
- 275. Для защиты от ожогов электролита в зарядных камерах находятся средства, нейтрализующие его действие.

ХХХІ. ПОДВЕСНЫЕ МОНОРЕЛЬСОВЫЕ ДОРОГИ

- 276. Оборудование горных выработок монорельсовыми дорогами выполняют по документации, утвержденной техническим руководителем (главным инженером) шахты.
- 277. Максимальные углы наклона и радиусы поворота горных выработок, в которых монтируют дороги, должны быть определены документацией завода изготовителя монорельсовой дороги и подвижного состава.
- 278. Расстояние от наиболее выступающей части габарита подвижного состава монорельсовой дороги или перевозимого груза до крепи горной выработки (или до расположенного в горной выработке оборудования) должно быть не менее 0,3 м. Допускается его уменьшение до 0,2 м при скорости движения подвижного состава на этом участке горной выработки 1 м/с и менее.

Это же расстояние в части горной выработки, предназначенной для передвижения персонала, должно быть не менее 0.7 м.

279. В горизонтальных и наклонных горных выработках, оборудованных конвейерным и монорельсовым транспортом, проход для персонала устраивают между подвижным составом и крепью горной выработки. Расстояние от подвижного состава до конвейера должно быть не менее 0,4 м.

На участках горной выработки, на которых осуществляют перегруз (погрузку) горной массы и (или) установлена приводная станция конвейера, допускается местное уменьшение зазора между подвижным составом и конвейером до 0,25 м.

У данных участков горных выработок устанавливают предупреждающие знаки. Подвижной состав должен двигаться на этих участках со скоростью не более 1 м/с и со звуковым предупредительным сигналом.

- 280. Запрещается одновременное использование в одной горной выработке средств подвесного монорельсового, рельсового транспорта, напочвенной зубчатой дороги и самоходного колесного транспорта.
- 281. Зазор между габаритами подвижного состава двух монорельсовых дорог (в горных выработках с двухпутным монорельсовым транспортом) должен быть не менее 0,4 м.
- 282. При оборудовании перегрузочных пунктов в местах сопряжения монорельсовых дорог между собой или с другими видами транспорта проходы для персонала устраивают по обоим бортам горной выработки.
- 283. Зазоры от подвижного состава подвесной монорельсовой дороги до крепи горной выработки на участках, на которых горная выработка меняет свое направление, и на примыкающих к

ним прямых участках горных выработок и длину этих прямых участков принимают в соответствии с приложением N 8 к настоящим Правилам.

284. Расстояние между подвижным составом и почвой горной выработки или расположенным на почве оборудованием должно быть не менее 0,4 м.

Перевозку крупногабаритного оборудования по горным выработкам, в которых расстояние от подвижного состава до почвы горной выработки или расположенного на почве оборудования менее 0,4 м, но более 0,2 м, проводят в порядке, утвержденном техническим руководителем (главным инженером) шахты при условии, что груз сопровождает специалист структурного подразделения.

В случаях если перевозку осуществляют по горным выработкам, оборудованным ленточными конвейерами, конвейеры выключают, а их пускатели блокируют.

- 285. Скорость движения подвижного состава по монорельсовым дорогам не должна превышать 2 м/с, а при перевозке длинномерных и крупногабаритных грузов 1 м/с.
- 286. Горные выработки с монорельсовым транспортом и подвижной состав монорельсовых дорог оснащают средствами сигнализации и знаками безопасности.
- 287. Формирование подвижного состава монорельсовых дорог проводят на горизонтальных участках горных выработок в соответствии с технической документацией изготовителя подвижного состава.
- 288. Подвижной состав монорельсовой дороги загружают таким образом, чтобы между находящимися на смежных тележках грузами выдерживалось расстояние, обеспечивающее прохождение состава на закруглениях и перегибах пути, но не менее 0,3 м.

На всем протяжении дороги зазор между перевозимым грузом и монорельсом должен быть не менее 50 мм.

- 289. Нахождение машиниста в кабине дизелевоза должно быть в голове состава. При работе подвижного состава монорельсовых дорог по спуску груза по горным выработкам с углом наклона 20° и более допускается нахождение машиниста в кабине дизелевоза в хвосте состава.
 - 290. Использование монорельсовых дорог запрещается:

в горных выработках с неисправной крепью, используемой для подвески монорельса, и при отсутствии требуемых зазоров по сечению горной выработки;

при неисправности монорельсового пути, подвижного состава, тормозной системы, аппаратуры управления и сигнализации, износах бандажей тяговых колес и тормозных колодок, превышающих значения, указанные в технической документации изготовителя и настоящих Правилах.

- 291. При эксплуатации монорельсового пути и при замыкании стрелочных переводов зазоры в стыках рабочих поверхностей не должны превышать 5 мм, а несовпадение рабочих поверхностей по вертикали и по горизонтали 3 мм.
- 292. Угол излома осей прямых секций монорельса на стыках в горизонтальной плоскости не должен превышать 4°. При этом допустимая величина зазора в стыках (5 мм) выдерживается с внутренней стороны монорельса.
- 293. Перевод стрелки с ручным приводом осуществляют только при остановленном и заторможенном составе.

- 294. В конечных пунктах монорельсового пути устанавливают концевые упоры, предотвращающие сход подвижного состава с монорельса.
- 295. Машинист ежесменно перед началом работы проверяет подвижной состав, локомотив, сцепки, сигнальные устройства и работоспособность тормозных тележек вручную.

Монорельсовый путь, тормозные устройства и электрооборудование не реже одного раза в сутки проверяет ответственный персонал, назначенный распорядительным документом по угледобывающей организации.

Проверку состояния монорельсовой дороги осуществляет еженедельно механик структурного подразделения, в ведении которого находится дорога, и ежеквартально - главный (старший) механик шахты. Результаты проверок фиксируют в порядке, установленном руководителем угледобывающей организации.

296. На дорогах в горных выработках с углом наклона более 6° ежемесячно под руководством механика структурного подразделения проводится испытание аварийной тормозной системы в соответствии с технической документацией изготовителя.

Результаты испытаний оформляют актом.

297. Тормозные тележки подвижного состава монорельсового транспорта не реже одного раза в шесть месяцев проходят динамические испытания на соответствие техническим характеристикам, указанным в технической документации завода-изготовителя.

Результаты испытаний оформляют актом.

- 298. Порядок эксплуатации машин с дизельным приводом и их технический контроль осуществляют в соответствии с технической документацией изготовителя.
- 299. Запрещается эксплуатация транспортных машин с дизельным приводом в горных выработках с расходом воздуха, недостаточным для разбавления выхлопных газов до санитарных норм, и при превышении допустимых норм содержания метана.

ХХХІІ. КОНВЕЙЕРНЫЙ ТРАНСПОРТ

300. Ленточные конвейеры оборудуют:

датчиками бокового схода ленты, отключающими привод конвейера при сходе ленты на сторону более 10% ее ширины. Датчики бокового схода ленты устанавливают в местах возможного трения ленточного полотна о неподвижные конструкции конвейера и крепи на верхних и нижних ветвях конвейера;

средствами пылеподавления, в местах перегрузов автоматически включаемыми при транспортировании горной массы;

устройствами по очистке ленточного полотна и барабанов;

средствами защиты, обеспечивающими автоматическое отключение электрической энергии на конвейере при превышении допустимого уровня транспортируемой горной массы в местах перегрузов, снижении скорости ленточного полотна до 75% номинальной (пробуксовка), превышении номинальной скорости ленточного полотна бремсберговых конвейеров на 8%;

устройством для отключения конвейера из любой точки по его длине;

тормозными устройствами;

блокировочными устройствами, отключающими конвейер при снижении давления воды в пожарооросительном трубопроводе ниже установленной нормы;

блокировочными устройствами, отключающими конвейер при снятии ограждений.

Ленточные конвейеры, установленные в горных выработках с углом наклона более 10°, оборудуют:

устройствами улавливания двух ветвей ленточного полотна, если конвейер работает в бремс-берговом режиме;

устройствами улавливания верхней ветви ленточного полотна, если конвейер работает в уклонном режиме;

устройствами улавливания на тех ветвях ленточного полотна, которые предназначены для перевозки персонала.

Периодический контроль целостности тросов резинотросовых ленточных полотен осуществляют с применением специальных средств неразрушающего контроля.

По истечении нормативного срока службы конвейерных ленточных полотен необходимо проводить экспертное обследование на продление срока безопасной эксплуатации.

301. Конвейерные линии, состоящие из нескольких конвейеров, оборудуют аппаратурой автоматического или дистанционного автоматизированного управления конвейерными линиями, обеспечивающей:

включение последующего в линии конвейера после установления номинальной скорости движения ленточного полотна предыдущего конвейера;

автоматическое отключение электрической энергии на конвейерах, транспортирующих горную массу на остановившийся конвейер, а в линии, состоящей из скребковых конвейеров, при неисправности одного из них - автоматическое отключение электрической энергии и на впереди стоящем скребковом конвейере;

невозможность дистанционного повторного включения неисправного конвейера при срабатывании электрических защит электродвигателя, неисправности механической части конвейера, при срабатывании защит из-за затянувшегося пуска конвейера, снижении скорости ленточного полотна до 75%

номинальной (пробуксовки) и превышении номинальной скорости ленточного полотна брем-сберговых конвейеров на 8%;

местную блокировку, предотвращающую пуск данного конвейера с пульта управления;

автоматическое отключение электрической энергии на конвейере при затянувшемся пуске;

двухстороннюю телефонную или громкоговорящую связь между приводами конвейеров и пультом управления;

блокировку работы ленточного конвейера при давлении воды в пожарооросительном трубопроводе менее нормируемого;

блокировку пуска конвейера при снятом ограждении.

302. В наклонных горных выработках, оборудованных конвейерами, разрешается настилка рельсового пути и установка лебедок, предназначенных для транспортирования материалов и обо-

рудования, необходимых при проведении и ремонте этих горных выработок и конвейеров. Для исключения одновременной работы конвейера и лебедки устанавливают соответствующие электрические блокировки.

- 303. Для закрепления в горных выработках приводных, натяжных и концевых станций конвейеров, механизированной передвижки конвейеров в лавах, натяжения цепи конвейеров при ее сборке и разборке, стягивания концов ленточного полотна при его стыковке на конвейерах, а также для расштыбовки конвейеров применяют устройства, предусмотренные технической документацией завода изготовителя конвейеров.
 - 304. В горных выработках с конвейерами оборудуют переходы через конвейеры.
 - 305. Запрещается:

ремонт, смазка движущихся деталей и очистка конвейеров во время их работы, работа при заштыбованном конвейере и неисправных роликах или при их отсутствии;

работа конвейера при трении ленточного полотна о неподвижные элементы конвейерного става или крепи, при неисправных средствах пожаротушения и пылеподавления и при необеспеченности их водой;

перевозка персонала, длинномерных материалов и запасных частей на не оборудованных для этих целей конвейерах.

306. Текущий осмотр конвейера, аппаратуры управления, роликов, натяжных и загрузочных устройств, ленточного полотна и его стыков, а также устройств, обеспечивающих безопасность эксплуатации конвейера (тормозных устройств, средств улавливания ленточного полотна), проводит ежесменно обслуживающий персонал.

Осмотр и проверку работы аппаратуры управления и защиты, устройств, обеспечивающих безопасность эксплуатации конвейеров, средств противопожарной защиты и давления воды в противопожарном ставе проводит один раз в сутки механик структурного подразделения, обслуживающего конвейер, или лицо, его замещающее.

Ежемесячно стационарные конвейеры осматриваются главным механиком шахты или лицом его замещающим.

Перед вводом в эксплуатацию и в процессе эксплуатации один раз в год специализированная наладочная организация проводит ревизию и наладку стационарных конвейерных линий.

307. Ленточные конвейеры должны быть оснащены устройством для плавного запуска.

Гидромуфты на конвейерах следует эксплуатировать при исправной защите, осуществляемой температурными реле или специальными калиброванными плавкими предохранительными пробками.

Запрещается эксплуатация конвейеров без опломбированных кожухов (люков обслуживания) гидромуфт.

Заправку гидромуфт производят негорючими жидкостями.

ХХХІІІ. ШАХТНЫЙ ПОДЪЕМ

308. Максимальная скорость подъема и спуска людей и грузов по вертикальным и наклонным горным выработкам не должна превышать величин, приведенных в приложении N 9 к настоящим Правилам.

309. Величина среднего замедления подъемной установки при подъеме расчетного груза как при предохранительном, так и при рабочем торможении в экстренных случаях не должна превышать значений, приведенных в приложении N 9 к настоящим Правилам.

Величина среднего замедления подъемной установки при спуске расчетного груза при предохранительном торможении обеспечивается не менее 0.75 м/c2 при углах наклона горных выработок до 30° и не менее 1.5 м/c2 при углах наклона горных выработок более 30° .

Под средним замедлением понимают отношение максимальной скорости ко времени, протекающему с момента начала торможения до полной остановки подъемной машины.

На подъемных установках со шкивами трения величину среднего замедления определяют на установившемся участке процесса торможения.

В выработках с переменным углом наклона величина замедления подъемной установки для каждого из участков пути с постоянным углом не превышает значений, приведенных в приложении N 9 к настоящим Правилам.

Величины замедлений для промежуточных углов наклона горных выработок, не указанных в приложении N 9 к настоящим Правилам, определяют путем линейной интерполяции.

В установках со шкивами трения замедление как при рабочем, так и при предохранительном торможении не должно превышать величины проскальзывания каната по шкиву.

На одноканатных и многоканатных скиповых подъемных установках со шкивом трения нижний предел замедления ограничивается величиной 1,2 м/с2 при условии, что оборудование таких установок оснащены блокировкой, исключающей возможность спуска груза со скоростью более 1 м/с.

Подъемные установки со шкивами трения, на которых регулировкой тормозной системы невозможно обеспечить требуемые замедления, оснащают системами избирательного или автоматически регулируемого предохранительного торможения.

Требования данного раздела не распространяются на проходческие лебедки и лебедки спасательных лестниц (при скорости движения каната не более 0,2 и 0,35 м/с соответственно).

- 310. На действующих подъемных установках с углами наклона горной выработки до 30° допускаются замедления менее 0.75 м/c^2 , если при этом обеспечивается остановка поднимающегося сосуда в пределах пути переподъема, а опускающегося на свободном участке пути, расположенном ниже посадочной (разгрузочной) площадки.
- 311. Для защиты от переподъема и превышения скорости шахтную подъемную установку снабжают следующими предохранительными устройствами;

подъемный сосуд (противовес) - концевым выключателем, установленным в горной выработке или копре и предназначенным для включения предохранительного тормоза при подъеме сосуда на 0,5 м выше уровня верхней приемной площадки (нормального положения при разгрузке), и дублирующим концевым выключателем на указателе глубины (или в аппарате задания и контроля хода).

В наклонных горных выработках концевые выключатели устанавливают на верхней приемной площадке на расстоянии 0,5 м от нормального положения, обусловленного рабочим процессом.

Подъемные установки с опрокидными клетями оснащают дополнительными концевыми выключателями, установленными на копре на 0,5 м выше уровня площадки, предназначенной для

посадки людей в клеть. Работа этих концевых выключателей также дублируется концевыми выключателями, установленными на указателе глубины (в аппарате задания и контроля хода). Данное требование не распространяется на подъемные установки с самоопрокидывающимися бадьями при проходке вертикальных стволов.

Допускается установка дублирующих концевых выключателей на копре на одном уровне с основными при питании их отдельными кабелями. Дополнительные концевые выключатели (основные и дублирующие) на установках с опрокидными клетями включают в цепь защиты в зависимости от заданного режима "груз" или "люди".

Для проверки исправности и правильности установки, основных и дублирующих выключателей на пульте машиниста устанавливают кнопки или переключатели (без фиксации положения). Допускается применение фиксирующих шунтирующих элементов, если схемой предусмотрена сигнализация (звуковая, световая) об их замкнутом состоянии;

ограничителем скорости, вызывающим включение предохранительного тормоза в случае:

превышения в период замедления скорости защитной диаграммы, величину которой в каждой точке пути замедления определяют из условий предотвращения аварийного переподъема скипов и клети;

превышения скорости равномерного хода на 15%;

подхода сосуда к верхней и нижней приемным площадкам, а также к жестким направляющим при канатной армировке ствола со скоростью более 1 м/с при спуске-подъеме людей и 1,5 м/с - при спуске-подъеме груза.

Данные требования распространяются на действующие подъемные установки со скоростью движения более 3 м/с и на вновь проектируемые со скоростью более 2 м/с (кроме грузовых наклонных подземных установок, оснащенных лебедками).

Остальные подъемные установки оснащают аппаратами, выключающими установку в случае превышения скорости равномерного хода на 15%.

Лебедки грузовых и действующих людских наклонных подъемов в подземных горных выработках до оснащения их ограничителями скорости оснащают аппаратом, вызывающим включение предохранительного тормоза в случае превышения скорости равномерного хода на 15%, и контролем скорости в одной - двух точках на участке замедления;

амортизирующими устройствами, устанавливаемыми на копре и в зумпфе ствола с многоканатной подъемной установкой, кроме реконструируемых установок с подъемными машинами, устанавливаемыми на земле.

312. Шахтные подъемные установки оборудуют следующими защитными и блокировочными устройствами:

блокировкой от чрезмерного износа тормозных колодок, срабатывающей при превышении установленного заводом-изготовителем максимально допустимого зазора между ободом барабана и тормозной колодкой. Это требование не распространяется на грузовые подземные и проходческие лебедки;

максимальной и нулевой защитой;

защитой от провисания струны каната;

блокировкой предохранительных решеток, исключающей возможность их открывания до прихода подъемного сосуда на приемную площадку и включающей сигнал "стоп" на пульте машиниста при открытых решетках;

блокировкой, позволяющей включать двигатель после переподъема сосуда только в сторону ликвидации переподъема;

блокировкой, не допускающей снятия предохранительного тормоза, если рукоятка рабочего тормоза не находится в положении "заторможено", а рукоятка аппарата управления (контроллера) находится в нулевом положении;

блокировкой, обеспечивающей остановку бадьи при подходе ее к нулевой площадке с закрытыми лядами, а также блокировкой, обеспечивающей при проходке ствола остановку бадьи за 5 м до подхода ее к рабочему полку и при подходе к забою ствола;

устройством, подающим сигнал стволовому или машинисту при выдергивании тормозных канатов в местах их крепления в зумпфе;

устройством, подающим сигнал машинисту при недопустимом поднятии петли уравновешивающего каната;

дублирующим ограничителем скорости или устройством, обеспечивающим контроль целостности передачи от вала подъемной машины к указателю глубины, если ограничитель скорости не имеет полного самоконтроля;

устройством, сигнализирующим машинисту о положении качающихся площадок и посадочных кулаков;

автоматическим звонком, сигнализирующим о начале периода замедления (за исключением грузовых подъемных установок, работающих в автоматическом режиме).

313. Шкивы с литыми или штампованными ободьями, для которых не предусматривается использование футеровки, заменяют новыми при износе реборды или обода на 50% их начальной толщины и во всех случаях, когда обнажаются торцы спиц.

Допускается наплавка желоба шкива при износе его в глубину не более 50% начальной толщины с последующим проведением контроля качества выполненных работ методом неразрушающего контроля.

314. На случай поломки подъемной машины или застревания клетей в стволе оборудуют аварийно-ремонтные подъемные установки.

При наличии в одном стволе двух подъемных установок или одной подъемной установки и лестничного отделения дополнительная аварийно-ремонтная установка может отсутствовать.

Допускается отсутствие стационарной аварийно-ремонтной подъемной установки при наличии на вооружении отряда аварийно-спасательных частей, обслуживающего шахту, передвижной подъемной установки.

На шахтах глубиной до 100 м допускается применение для этой цели ручных лебедок, оборудованных тормозами и храповичным остановом.

Для стволов (скважин), оборудованных одним подъемом, используемым только в аварийных случаях и для ремонтных работ, разрабатывают мероприятия по выводу людей из застрявшего (зависшего) подъемного сосуда.

При проходке и углубке стволов на случай аварии с подъемом необходимо иметь подвесную аварийно-спасательную лестницу длиной, обеспечивающей размещение на ней одновременно всех рабочих наибольшей по численности смены. Лестницу прикрепляют к канату лебедки, оборудованной тормозами и имеющей комбинированный привод (механический и ручной). Ручной привод лебедки обеспечивает подъем лестницы при аварийном отключении электроэнергии.

На нижнем этаже рабочего полка размещают аварийную канатную лестницу необходимой длины для выхода людей из забоя ствола на проходческий полок. При прохождении спасательной лестницы через полок до забоя наличие аварийной канатной лестницы не предусматривается.

При проходке стволов глубиной до 100 м лебедки для подвески аварийно-спасательных лестниц могут иметь ручной привод и быть оборудованы тормозами и храповичным остановом.

315. Запрещается переход людей через подъемные отделения ствола. На всех горизонтах шахты перед стволами устанавливают предохранительные решетки для предупреждения перехода людей через подъемные отделения. На верхних горизонтах допускается работа в людском и грузовом режимах без посадочных кулаков.

При подъеме и спуске людей, а также при работе подъема в режиме "ревизия" механизмы обмена грузов (вагонеток) на всех приемных площадках ствола отключают.

На действующих шахтах допускается применение на верхней приемной площадке дверей гильотинного типа при наличии дополнительного ограждения, препятствующего доступу людей к стволу до полной остановки клети, и в период ее отправления.

Требование включения сигнала "стоп" на пульте машиниста при открытых решетках не распространяется на подъемные установки, оборудованные дверями гильотинного типа.

316. В стволах шахт, по которым не предусмотрены спуск и подъем людей, пользоваться подъемными установками разрешается только лицам, занятым на осмотре и ремонте этих стволов.

При проходке стволов во время спуска-подъема оборудования проходческими лебедками работа подъема разрешается только для перемещения наблюдающих за спуском-подъемом оборудования рабочих и технического персонала.

- 317. Все промежуточные, нижние и верхние приемные площадки вертикальных стволов, по которым производят подъем и спуск грузов в вагонетках, а также площадки перед опрокидывателем оборудуют стопорными устройствами, обеспечивающими единичную дозировку и предотвращающими произвольное скатывание вагонеток.
 - 318. Утратил силу. Приказ Ростехнадзора от 02.04.2015 N 129.

XXXIV. АРМИРОВКА

319. Суммарный зазор между направляющими башмаками скольжения подъемного сосуда (противовеса) и проводниками при их установке составляет:

на базовой отметке (участок проводников от места разгрузки подъемного сосуда до места установки концевого выключателя переподъема) в лобовом и боковом направлениях для рельсовых проводников - 10 мм, для деревянных - 20 мм;

по глубине ствола в лобовом направлении для рельсовых проводников - 10 ± 8 мм, для деревянных - 20 ± 10 мм.

На базовой отметке обеспечивают номинальный размер колей проводников.

При применении на подъемных сосудах упругих рабочих направляющих устройств качения устанавливают предохранительные башмаки, которые монтируют непосредственно на несущей конструкции подъемного сосуда и конструктивно не связаны с рабочими направляющими устройствами. Суммарный зазор между контактными поверхностями предохранительных башмаков скольжения и проводников при их установке на базовой отметке составляет: для рельсовых проводников - 20 мм, для коробчатых - 30 мм.

Башмаки скольжения либо их сменные вкладыши подлежат замене при износе контактных поверхностей более 8 мм на сторону.

Максимальный суммарный износ проводников и башмаков на сторону в лобовом и боковом направлениях: при рельсовых проводниках - 10 мм, деревянных - 18 мм.

Общий максимальный износ боковых поверхностей башмака и рельсового проводника двухстороннего расположения 20 мм.

Глубина зева рабочих направляющих башмаков скольжения открытого типа при их установке: для рельсовых проводников - 60 мм, для деревянных - 80 мм.

Глубина зева предохранительных башмаков скольжения при их установке: для проводников из рельсов - 65 мм, для коробчатых - 110 мм.

Внутренний диаметр новых вкладышей рабочих направляющих устройств скольжения для канатных проводников при их установке должен быть на 10 мм больше диаметра проводникового каната. Глубина канавки роликов при применении направляющих роликоопор составляет не менее 1/3 диаметра проводникового каната. Для предохранительных направляющих устройств при применении канатных проводников разница в диаметрах нового вкладыша и проводникового каната составляет 20 мм, а допустимый износ вкладышей направляющих - 15 мм по диаметру.

320. Инструментальную проверку износа проводников проводят на каждом ярусе армировки: для металлических - через один год, для деревянных, а также в стволах, где срок службы металлических проводников составляет менее пяти лет, - через шесть месяцев.

Ответственным за проверку является главный механик шахты.

Проводники подлежат замене при износе на сторону в лобовом и боковом направлениях:

рельсовые - более 8 мм, а в армировке с двухсторонним расположением проводников относительно сосудов при суммарном боковом износе - более 16 мм;

деревянные - более 15 мм;

коробчатые - более половины толщины стенки.

Износ полки, соединяющей головку рельсовых проводников с подошвой, допускается не более чем на 25% номинальной ее толщины.

В отдельных случаях допускается износ рельсовых проводников до 12 мм на сторону (суммарный износ при двустороннем расположении проводников - до 24 мм). При этом решение о возможности их дальнейшей эксплуатации принимает специальная комиссия под руководством главного механика угледобывающей организации или самостоятельной шахты по результатам инструментального обследования армировки и выполнения расчетов с учетом кинематики и динамики взаимодействия сосудов с проводниками.

В этом случае инструментальную проверку износа проводников проводят не реже чем через шесть месяцев.

При парашютах резания деревянные проводники в стволе подлежат замене при суммарном их боковом износе более 20 мм.

321. Зазоры между максимально выступающими частями подъемных сосудов стационарных подъемных установок, крепью и расстрелами в вертикальных стволах соответствуют величинам, приведенным в приложении N 10 к настоящим Правилам.

При проходке и углубке ствола величина зазора между средними направляющими канатами составляет не менее 300 мм. При глубине ствола более 400 м устанавливают отбойные канаты или другие устройства, предупреждающие возможность столкновения бадей. Эти устройства не требуются, если зазоры между средними направляющими канатами равны 250 + H/3 мм, где H - глубина ствола, м.

Зазор между движущимися бадьями и крепью ствола или выступающими частями оборудования, расположенного в стволе (трубопроводами, балками), составляет не менее 400 мм.

Зазор между стенками раструба проходческого полка и выступающими частями движущейся направляющей рамки бадьи составляет не менее 100 мм.

При проходке стволов с параллельным или последующим армированием зазоры между наиболее выступающей частью бадьи или направляющей рамки и расстрелами составляют:

при канатных проводниках, расположенных в плоскости, перпендикулярной расстрелам, - не менее 350 мм;

при канатных проводниках, расположенных в плоскости, параллельной расстрелам, - не менее 400 мм;

при жестких проводниках между наиболее выступающей частью стойки направляющей рамки и проводником - не менее 30 мм.

Перед пуском вновь навешенного или отремонтированного подъемного сосуда (противовеса), а также после ремонтных работ в стволе, связанных с рихтовкой армировки, проводников или крепи, после падения в ствол предметов, которые могут повлиять на положение армировки, проводят проверку зазоров. После ремонта, связанного с заменой армировки или проводников, проводят профилировку проводников.

Зазоры между двумя подъемными сосудами в наклонных горных выработках составляют не менее 200 мм. Зазор между крепью горной выработки и наиболее выступающей кромкой габарита подъемного сосуда должен составлять: при деревянной крепи, металлической и из железобетонных стоек - не менее 250 мм, при бетонной и каменной крепи - не менее 200 мм.

ХХХV. ПОДЪЕМНЫЕ МАШИНЫ И ПРОХОДЧЕСКИЕ ЛЕБЕДКИ

322. Людские и грузолюдские подъемные установки имеют электрический привод. Асинхронный привод с реостатным управлением оснащают системой динамического торможения. Система динамического торможения в случае нарушения ее схемы включает предохранительный тормоз.

Лебедки, служащие для спуска и подъема людей в клетях и вагонетках по наклонным и вертикальным горным выработкам, должны соответствовать требованиям, предъявляемым к подъемным машинам.

323. При проходке вертикальных стволов, шурфов, скважин для навески проходческого оборудования и осуществления спуско-подъемных операций с различным оборудованием и материа-

лами применяют проходческие лебедки, отвечающие требованиям действующих стандартов, норм безопасности и настоящих Правил.

324. Подъемные машины и лебедки снабжают аппаратом (индикатором), показывающим машинисту положение сосудов в стволе.

При работе подъемной машины на проходке или углубке ствола на реборде барабана наносят отметку верхнего среза раструба проходческого подвесного полка.

На лебедках, предназначенных для подвески оборудования при проходке вертикальных стволов, индикатор глубины не требуется.

Каждую подъемную машину оснащают:

устройством для диагностики и регистрации основных параметров и режимов работы, включающим контроль скорости подъемных сосудов;

вольтметром и амперметром;

манометрами, показывающими давление сжатого воздуха или масла в тормозной системе.

325. Подъемные машины и лебедки имеют рабочий и предохранительный тормоз с независимым включением привода. Тормоз воздействует на орган навивки.

Проходческие лебедки и лебедки для спасательных лестниц (скорость движения концевого груза не более 0,2 м/с и 0,35 м/с соответственно) оборудуют:

маневровым тормозом на валу двигателя или на промежуточном валу;

предохранительным тормозом;

стопорным устройством на барабане (храповичный останов);

блокировкой, исключающей пуск электродвигателя в направлении спуска груза при включенном предохранительном тормозе и стопорном устройстве.

326. В заторможенном (неподвижном) состоянии подъемной машины (лебедки) отношения величин моментов, создаваемых предохранительным тормозом, к максимальным статическим моментам ($K = M_{\text{торм}} / M_{\text{стат}}$) имеют минимальные значения при углах наклона: до 20° - 2.1, до 25° - 2.6, 30° и более - 3.0. Значение коэффициента K для промежуточных углов наклона определяют путем линейной интерполяции.

Для горных выработок с переменными углами наклона тормозной момент рассчитывают для каждого из участков пути с постоянным углом наклона и принимают по наибольшему из полученных значений.

Рабочий тормоз в неподвижном состоянии подъемной машины должен обеспечивать момент не менее момента, создаваемого предохранительным тормозом.

При перестановке барабанов тормозное устройство обеспечивает на заклиненном барабане момент, равный не менее 1,2 статического момента, создаваемого массой порожнего сосуда и массой головного (уравновешивающего) каната. При перестановке барабанов и перемещении сосуда нахождение людей в сосуде и стволе запрещается.

У проходческих лебедок и лебедок для спасательных лестниц (со скоростью движения концевого груза до 0,2 м/с и 0,35 м/с соответственно) тормозные моменты, создаваемые отдельно маневровым и предохранительным тормозом, обеспечивают не менее 2-кратный наибольший стати-

ческий момент нагрузки. Включение предохранительного тормоза сопровождается автоматическим срабатыванием маневрового тормоза.

- 327. Продолжительность холостого хода предохранительного тормоза действующих подъемных машин не превышает:
 - 0,5 с при пневмогрузовом приводе;
 - 0,6 с при гидрогрузовом приводе;
- 0,3 с при пневмопружинном и гидропружинном приводах, а также для всех вновь создаваемых конструкций тормозных устройств.

Время срабатывания тормоза независимо от типа привода тормоза не должно превышать 0,8 с только при спуске груза (противовеса).

Для подъемных машин со шкивами трения, оснащенных системами избирательного или автоматически регулируемого предохранительного торможения, это требование распространяется только на режим спуска груза (противовеса).

Для проходческих лебедок продолжительность холостого хода не должна превышать 1,5 с.

На одноконцевых подъемных установках в наклонных горных выработках должны быть установлены устройства, управляющие предохранительным тормозом и исключающие набегание вагонеток на канат при предохранительном торможении. Время срабатывания предохранительного тормоза при этом может превышать 0,8 с.

- 328. После замены элементов тормозной системы (тормозные колодки, тяги, цилиндры) необходимо проводить ее испытание. Результаты испытания оформляют актом.
- 329. На вертикальных и наклонных поверхностных, а также подземных с углом наклона более 60° грузолюдских и людских подъемах используют однослойную навивку на барабаны машин.

На подъемных машинах грузовых вертикальных и наклонных подъемов, установленных на поверхности, людских и грузолюдских подъемов в подземных горных выработках с утлом наклона от 30 до 60° используют однослойную или двухслойную навивку канатов на барабаны.

Трехслойную навивку используют на всех остальных подъемах, а также при проходке вертикальных и наклонных горных выработок.

На аварийно-ремонтных и вспомогательных грузовых подъемных установках (породные стволы, подъем грузов на эстакады, спуск и подъем грузов и вспомогательных материалов по вертикальным и наклонным горным выработкам с количеством циклов не более 10 в смену), а также на проходческих лебедках со скоростью не более 0,4 м/с и лебедках для спасательных лестниц (скорость до 0,35 м/с) допускается многослойная навивка.

При навивке более одного слоя каната на барабан должны быть обеспечены следующие условия:

реборда барабана выше верхнего слоя навивки на 2,5 диаметра каната;

за критическим участком каната длиной в четверть последнего витка нижнего ряда (переход на верхний ряд) ведут постоянный контроль (учет разорванных в этом месте проволок);

каждые два месяца производят передвижение каната на четверть витка.

Барабаны проходческих лебедок имеют реборды с двух сторон, выступающие над верхним слоем навивки не менее чем на 2,5 диаметра каната.

На действующих наклонных подъемных установках при доработке горизонтов допускается превышение указанного числа слоев навивки на один при условии выполнения требований данного пункта настоящих Правил и при наличии устройства для плавного перехода каната с одного слоя на другой, а при четырехслойной навивке каната на барабан - при наличии защиты, исключающей возможность работы подъема при навивке каната на пятый слой.

На проходческих лебедках, имеющих скорость не более 0,4 м/с, высота реборды над верхним слоем навивки должна быть не менее 1,5 диаметра каната.

Футеровка барабанов имеет нарезанные канавки независимо от числа слоев навивки каната.

На проходческих лебедках (скорость не более 0,2 м/с) и лебедках для спасательных лестниц (скорость до 0,35 м/с) могут быть применены барабаны без футеровки и нарезанных канавок.

При строительстве и реконструкции шахт с блочной схемой вскрытия и при проходке фланговых стволов, а также при необходимости проведения горных выработок околоствольного двора через скиповый ствол допускается двухслойная и трехслойная навивка канатов на барабан грузолюдских подъемов на указанных стволах в период проведения горизонтальных и наклонных горных выработок. При этом кроме соблюдения условий, указанных выше, шахтостроительная организация разрабатывает дополнительные мероприятия, обеспечивающие безопасность спуска и подъема людей.

- 330. Для ослабления натяжения каната в месте его прикрепления к барабану на поверхности последнего должно быть не менее трех витков трения, футерованных деревом и пресс-массой, и не менее пяти витков трения на барабанах без футеровки.
- 331. Проходческие лебедки, используемые для навески полков, опалубки, направляющих канатов, а также лебедки для наращивания технологических трубопроводов, установки тюбингов и элементов армировки оборудуют устройствами контроля натяжения канатов.
 - 332. На каждой подъемной установке обеспечивают следующий резерв:

испытанный и годный для навески канат или полный комплект канатов для многоканатных подъемов;

подъемный сосуд с прицепным устройством;

электродвигатель или полный комплект запасных частей к нему, а в случае системы постоянного тока и к генератору;

компрессор с электродвигателем при отсутствии подвода от общешахтной пневмосистемы;

комплект тормозных колодок;

комплект футеровки (для подъемных машин со шкивом трения);

необходимое количество запасных вкладышей или подшипников качения, быстроходных валов и быстроизнашивающихся элементов аппаратов контроля, управления и защиты, определяемое заводом-изготовителем.

ХХХVI. ТРЕБОВАНИЯ К ОБСЛУЖИВАНИЮ

333. Подъемные сосуды, парашюты, стопоры, подвесные устройства, направляющие башмаки, посадочные, загрузочные и разгрузочные устройства, направляющие и отклоняющие шкивы, их футеровку и подшипники, тормозную систему и другие элементы подъемной машины, аппаратуру защиты и систему управления осматривает и проверяет ежесуточно механик подъема или лицо, имеющее соответствующую квалификацию и назначенное приказом по шахте для этой цели. Это же лицо армировку и крепь ствола ежесуточно осматривает при скорости движения сосудов до 1 м/с и не реже одного раза в неделю при скорости 0,3 м/с. Участки стволов, находящиеся в ремонте, осматривают ежесуточно при скорости 0,3 м/с. Допускается одновременное проведение осмотра армировки в смежных отделениях ствола при разности отметок по высоте между подъемными сосудами, из которых проводят осмотр, не более 5 м.

Перед навеской нового каната и в дальнейшем не реже одного раза в квартал главный механик шахты или старший механик проводит осмотр шкивов. При этом измеряют сечение желоба и толщину его тела по контрольному отверстию и производят зарисовку наиболее изношенного места площади сечения желоба.

Главный механик или старший механик шахты не реже одного раза в 15 дней проводит проверку правильности работы предохранительного тормоза и защитных устройств и не реже одного раза в месяц - исправность всех остальных вышеуказанных элементов подъемной установки. Результаты осмотров заносят в книгу осмотра подъемной установки.

Копры осматривает комиссия под председательством технического руководителя (главного инженера) шахты.

Осмотр металлических и железобетонных копров проводят один раз в год, а деревянных и проходческих - два раза в год.

Нормативный срок службы копров, по истечении которого необходимо проводить экспертное обследование технического состояния, составляет 25 лет. Экспертное обследование проводит специализированная организация. Последующее проведение обследования выполняют не реже одного раза в пять лет.

334. Проверку проходческих лебедок проводит ежесменно и перед каждой спуско-подъемной операцией электрослесарь, один раз в неделю - механик проходки (участка), один раз в месяц - главный механик шахтопроходческого (шахтостроительного) управления.

Результаты проверок фиксируют документально в порядке, установленном руководителем шахты.

335. Машинистами подъемных машин могут назначать приказом по шахте лиц с общим стажем работы на шахте не менее одного года, прошедших специальное обучение, получивших соответствующее удостоверение, прошедших двухмесячную стажировку. Машинистами людских и грузолюдских, а также многоканатных подъемов назначают лиц, проработавших не менее одного года на грузовых подъемных машинах. При проходке и углубке стволов машинистами подъемов могут быть назначены лица, прошедшие специальное обучение, получившие соответствующее удостоверение и прошедшие трехмесячную стажировку на подъеме при проходке ствола.

При переходе на управление другой машиной, а также при перерыве в работе более одного месяца машинист проходит стажировку. Срок стажировки определяет главный механик шахты.

Не реже одного раза в год проверку знаний у машинистов проводит комиссия под председательством главного механика угледобывающей организации.

336. В часы спуска и подъема смены работников, кроме сменного, присутствует второй машинист, имеющий право на управление этой машиной, в обязанности которого входит наблюде-

ние за процессом подъема и спуска и принятие необходимых мер в случае нарушения нормальной работы подъемной машины или неправильных действий сменного машиниста.

337. Машинист, принимающий смену, перед началом работы выполняет проверку исправности машины. Проводить спуск и подъем людей разрешается после предварительного перегона обоих подъемных сосудов вниз-вверх вхолостую. Результаты проверки машинист заносит в книгу приемки и сдачи смен.

О замеченных неисправностях машинист подъемной машины сообщает механику подъема или главному механику шахты и горному диспетчеру, которые разрешают работу подъемной машины после сообщения машиниста.

338. Во время работы клетевого подъема на приемной (посадочной) площадке надшахтного здания находятся рукоятчики, в околоствольных дворах действующих горизонтов - стволовые. При разносторонней посадке в клеть и выходе людей из клети рукоятчики и стволовые должны иметь помощников, находящихся по другую сторону клети.

На всех стволах, оборудованных механическим подъемом и служащих для выдачи людей только в аварийных случаях, наличие машинистов подъемных машин, стволовых и рукоятчиков на приемных площадках должно быть определено ПЛА.

Если одновременно проводят посадку людей в несколько этажей многоэтажной клети или выход из них, то на каждой приемной площадке находится рукоятчик, а в околоствольном дворе - стволовой, которые дают сигналы главному рукоятчику и главному стволовому соответственно.

На промежуточных горизонтах, на которых не производят прием и выдачу грузов и имеется рабочая сигнализация машинисту и рукоятчику, а также прямая телефонная связь с ними, допускается спуск (подъем) людей при отсутствии на них стволовых при следующих условиях:

в клети имеется устройство для непосредственной сигнализации рукоятчику и машинисту, а также телефонная связь;

в клети находится лифтер (стволовой).

Подъемную установку, управляемую из клети, обслуживает лифтер.

На работу в лифтовом режиме составляют спецпроект.

339. У всех посадочных пунктов и в машинном отделении вывешивают объявления с указанием:

фамилии лица, ответственного за безопасную организацию спуска и подъема людей;

расписания подъема и спуска людей;

применяемых сигналов;

числа людей, одновременно поднимаемых и спускаемых в каждом этаже клети, бадье или людской вагонетке.

О запрещениях или ограничениях пользования подъемной установкой для спуска и подъема людей в посадочных пунктах вывешивают объявления и проводят инструктаж машинистов подъема, стволовых и рукоятчиков с разъяснением причин таких запрещений или ограничений.

340. На всех приемных площадках вывешивают таблицы с указанием допустимой загрузки клетей, а для подъемных установок со шкивами трения - указания об одновременной загрузке обе-

их клетей для предотвращения опасности скольжения. Стволовых и рукоятчиков не реже одного раза в квартал инструктируют о правилах и нормах загрузки.

Спуск и подъем длинномерных материалов или крупногабаритного оборудования под клетью проводят под руководством сменного специалиста производственного участка. Об этом необходимо заранее сообщить диспетчеру, стволовым промежуточных горизонтов, рукоятчику и машинисту подъема.

341. Перед вводом в эксплуатацию и в дальнейшем один раз в год специализированная наладочная организация с участием представителей энергомеханической службы шахты осуществляет ревизию и наладку подъемной установки. Это требование не распространяется на грузовые лебедки, предназначенные для спуска-подъема оборудования и материалов.

Электрическая часть и аппаратура автоматизированных подъемных установок подлежат ревизии и наладке через шесть месяцев.

Не реже одного раза в год маркшейдерская служба шахты или специализированная организация, имеющая на это право, выполняет полную проверку геометрической связи шахтного подъема и копра. По результатам проверки составляют акт, который утверждает технический руководитель (главный инженер) угледобывающей организации. Один экземпляр этого акта передают главному механику угледобывающей организации.

После ревизии и наладки подъемной установки главный механик угледобывающей организации и представитель наладочной организации проводят контрольные испытания ее. О проведении контрольных испытаний составляют протокол, который утверждает руководитель или технический руководитель (главный инженер) угледобывающей организации.

Через шесть месяцев после ревизии и наладки каждую эксплуатационную и проходческую подъемную установку подвергают техническому осмотру и испытанию комиссией под руководством главного механика шахты.

О проведенном осмотре и испытании составляют акт.

342. На подъемной установке находятся:

график работы подъема, утвержденный техническим руководителем (главным инженером) шахты, с указанием времени, необходимого для производства ежесуточных осмотров элементов подъемной установки;

паспорт подъемной машины и редуктора;

детальная схема тормозного устройства с указанием основных размеров;

исполнительные электрические схемы (принципиальные, монтажные);

схема парашютных устройств с контролируемыми размерами;

инструкция для машинистов подъемных установок;

прошнурованные книга осмотра подъемной установки, книга осмотра канатов и их расхода, книга приемки и сдачи смен, рекомендуемый образец которых приведен в приложении N 11 к настоящим Правилам.

Схему тормозного устройства, исполнительную электрическую схему, схему парашютных устройств и инструкцию для машиниста вывешивают в машинном помещении.

XXXVII. СИГНАЛИЗАЦИЯ И СВЯЗЬ НА ШАХТНОМ ТРАНСПОРТЕ И ПОДЪЕМЕ

- 343. Каждую подъемную установку оснащают устройством для подачи сигнала от стволового к рукоятчику и от рукоятчика к машинисту, а также ремонтной сигнализацией, используемой при осмотре и ремонте ствола, подъемных сосудов и элементов копрового станка. В стволах глубиной более 500 м для ремонтной сигнализации используют средства беспроводной связи.
- 344. На людских и грузолюдских вертикальных и наклонных подъемных установках (с углом наклона горной выработки более 50°), кроме рабочей и ремонтной сигнализации следует предусматривать резервную сигнализацию с обособленным питанием по отдельному кабелю или каналу, обеспечивающему ее работоспособность при неисправности рабочей сигнализации. По функциональным возможностям резервная сигнализация не отличается от рабочей. При наличии в одном стволе двух подъемных установок, каждая из которых обеспечивает спуск и подъем людей со всех горизонтов, резервная сигнализация может отсутствовать.
- 345. При подъеме людей из шахты скипами в аварийных случаях, предусмотренных ПЛА, обеспечивают возможность подачи сигналов с посадочной площадки на верхнюю приемную площадку и с верхней приемной площадки машинисту подъема.
- 346. Подъемную установку, обслуживающую несколько горизонтов, оборудуют устройством, показывающим, с какого горизонта подан сигнал, и устройством, препятствующим одновременному поступлению сигналов с разных пунктов.
- 347. На одноклетьевых людских подъемных установках, оборудованных сигнализацией из клети, подачу сигнала из клети машинисту осуществляет персонал, прошедший обучение и назначенный приказом по шахте.

На грузолюдских одноканатных подъемных установках, оборудованных сигнализацией из клети, следует предусматривать сигнализацию с приемных площадок, а также устройство, не допускающее одновременной подачи сигналов из клети и с приемных площадок.

Ремонтная сигнализация на таких подъемных установках может отсутствовать.

348. Вагонетки для перевозки людей по горизонтальным горным выработкам оборудуют устройствами для подачи сигнала "стоп" машинисту локомотива.

На людских подъемах с пассажирскими вагонетками в горных выработках с углом наклона до 50° следует предусматривать сигнализацию, обеспечивающую подачу сигналов машинисту подъема горнорабочим (кондуктором) из поезда. Эта сигнализация может быть использована при осмотре и ремонте горных выработок и рельсового пути, а также для подачи сигнала "стоп" в аварийных случаях.

Если поезд для доставки людей состоит более чем из трех вагонеток, следует предусматривать сигнализацию горнорабочему (кондуктору) поезда, доступную всем пассажирам, находящимся в вагонетках.

Все приемные площадки обеспечивают телефонной или производственной громкоговорящей связью с машинистом подъема.

349. Каждую подъемную установку, используемую при проходке и углубке ствола, оборудуют не менее чем двумя независимыми сигнальными устройствами, одно из которых выполняет функции рабочей сигнализации, а второе - резервной и ремонтной. Устройство рабочей сигнализации обеспечивает возможность подачи сигналов из забоя на полок, с полка - рукоятчику и от рукоятчика - машинисту, а ремонтной или резервной сигнализации, если она выполняет функции ремонтной, - с любой точки ствола.

350. При наличии в одном стволе, находящемся в проходке, двух равноценных подъемных установок функции резервной и ремонтной сигнализации могут быть выполнены одним сигнальным устройством при доступе к нему из сосудов обеих подъемных установок.

Если ствол оборудован более чем одной подъемной установкой, подачу исполнительного сигнала осуществляет только рукоятчик каждой подъемной установки.

- 351. Схема стволовой сигнализации всех подъемных установок предусматривает возможность подачи сигнала "стоп" с любого горизонта непосредственно машинисту. Нетиповой (неясный) сигнал рукоятчик, стволовой и машинист воспринимает как сигнал "стоп". Возобновление работы подъемной установки разрешается только после личного выяснения машинистом причин подачи нетипового (неясного) сигнала.
- 352. Запрещается передавать сигнал из околоствольного двора непосредственно машинисту, минуя рукоятчика. Указанное запрещение не распространяется на:

сигнальные устройства, имеющие блокировку, препятствующую пуску машины до получения разрешительного сигнала от рукоятчика;

одноклетьевые подъемные установки с подачей сигнала из клети;

скиповые подъемные установки;

установки с опрокидными клетями при подъеме только груза;

ремонтную сигнализацию.

Подача сигнала на работу подъема разрешается только после закрывания двери клети и стволовых решеток.

- 353. Между машинистом подъемной машины и рукоятчиком, а также между рукоятчиком и стволовым должна быть оборудована прямая телефонная связь. Такую же связь оборудуют и на скиповых подъемных установках между машинистом и операторами загрузочного и разгрузочного устройств. На вновь строящихся шахтах к моменту сдачи их в эксплуатацию устанавливают двухстороннюю громкоговорящую связь.
- 354. При проходке и углубке стволов должна быть оборудована прямая двухсторонняя телефонная связь или громкоговорящая связь поверхности с полком.

XXXVIII. ШАХТНЫЕ КАНАТЫ

- 355. В шахтных стволах применяют канаты с трудногорючей оболочкой.
- 356. Для людских и грузолюдских подъемно-транспортных установок применяют подъемные и тяговые грузолюдские канаты марок ВК и В, остальные не ниже марки 1.
- 357. Канаты шахтных подъемных установок обеспечивают при навеске запас прочности не ниже значений, приведенных в приложении N 12 к настоящим Правилам.
- 358. Для вертикальных стволов при максимальной длине отвеса более 600 м отношение суммарного разрывного усилия всех проволок подъемного каната к концевому грузу (без учета массы подъемного каната) должно быть не менее значений, приведенных в приложении N 12 к настоящим Правилам.

При навеске канатов по отношениям, приведенным в приложении N 12 к настоящим Правилам, запас их прочности, рассчитываемый с учетом массы каната, обеспечивают не ниже 4,5-кратного для грузовых и 5-кратного для людских и грузолюдских подъемных установок.

- 359. Запрещается применение канатов одинарной свивки из круглых проволок для навески проходческого оборудования, а также закрытых подъемных канатов в качестве проводников бадьевого подъема.
- 360. На одноканатных подъемных установках с канатными проводниками для обоих подъемных сосудов навешивают головные канаты одного диаметра, конструкции и направления свивки.
 - 361. На многоканатном подъеме устанавливают не менее двух уравновешивающих канатов.
- 362. Запас прочности канатов дорог вспомогательного транспорта шахт и при откатке бесконечным канатом по горным выработкам при навеске должен быть не ниже значений, приведенных в приложении N 12 к настоящим Правилам.
- 363. Запас прочности рабочих (тяговых) канатов, используемых для перемещения забойного оборудования, должен быть не менее 3-кратного по отношению к номинальному тяговому усилию на их рабочих барабанах.
- 364. Запас прочности предохранительных канатов забойных машин должен быть не менее 6-кратного по отношению к массе выемочной машины с учетом угла падения пласта.

ХХХІХ. ИСПЫТАНИЕ КАНАТОВ

365. Шахтные канаты перед навеской и в процессе эксплуатации испытывают на канатно-испытательных станциях.

Резервный испытанный канат перед навеской можно вторично не испытывать, если срок хранения его не превышает 12 месяцев.

- 366. Все подъемные канаты вертикальных и наклонных шахтных подъемов, за исключением канатов на грузовых наклонных подъемах с углом наклона менее 30° , канатов для подвески полков, спасательных лестниц и проходческих люлек, испытывают перед навеской.
- 367. Канаты подъемных установок и проходческие, испытанные перед навеской, за исключением канатов в установках с одноканатными и многоканатными шкивами трения, канаты для подвески полков испытывают повторно в следующие сроки:

через каждые шесть месяцев на людских и грузолюдских подъемных установках, а также для проходческих люлек;

через двенадцать месяцев после навески и затем через каждые шесть месяцев на грузовых, аварийно-ремонтных и передвижных подъемных установках, а также для спасательных лестниц;

через шесть месяцев после навески, а затем через каждые три месяца подъемные многопрядные неоцинкованные малокрутящиеся канаты (грузовые и грузолюдские);

через восемнадцать месяцев после навески, а затем через каждые шесть месяцев канаты вертикальных подъемов и наклонных людских, грузолюдских подъемов (с углом наклона свыше 60°), проверяемые канатными дефектоскопами.

Срок повторных испытаний канатов исчисляют с момента их навески.

Канаты, используемые для подвески спасательных лестниц и проходческих люлек, можно повторно не испытывать, если их проверяют в соответствии с требованиями, приведенными в приложении N 12 к настоящим Правилам.

Шестипрядные подъемные канаты барабанных людских, грузолюдских и грузовых подъемных установок, размещенных в стволах с жесткими посадочными устройствами, перекрепляют к прицепным устройствам не реже чем через шесть месяцев.

368. Тяговые и натяжные канаты подземных пассажирских канатных дорог, тяговые канаты монорельсовых и напочвенных дорог испытывают перед навеской.

Повторно через каждые шесть месяцев испытывают только тяговые канаты монорельсовых и напочвенных дорог.

369. Канат при повторном испытании снимают и заменяют другим, если суммарная площадь поперечного сечения проволок, не выдержавших испытания на разрыв и перегиб, достигает 25% общей площади поперечного сечения всех проволок каната.

XL. НАДЗОР ЗА КАНАТАМИ

370. Запрещается навешивать и использовать стальные канаты с порванными, выпученными или запавшими прядями, с узлами, "жучками" и другими повреждениями, а также с уменьшением номинального диаметра более чем на 10%.

Применение счаленных канатов допускается только для откатки бесконечным канатом грузов по горизонтальным и наклонным горным выработкам с углом наклона до 30°, а также на подземных пассажирских подвесных канатных, монорельсовых и напочвенных дорогах. При проходке стволов в случае применения для подвесного оборудования канатов длиной более 1000 м допускается соединение их устройствами заводского изготовления.

Устройства для соединения канатов осматривают один раз в неделю. В случае применения коуш-счалок с жимками необходимо один раз в три месяца проверять надежность соединения путем подтяжки гаек.

371. Канаты шахтных подъемных установок подлежат осмотру лицами, назначенными приказом по шахте, в следующие сроки:

ежесуточно - подъемные канаты сосудов и противовесов вертикальных и наклонных подъемных установок, уравновешивающие канаты подъемных установок со шкивами трения, канаты для подвески механических грузчиков (грейферов) при проходке стволов. На многоканатных подъемных установках, когда число оборванных проволок каната не превышает 2% общего числа проволок на длине одного шага свивки, допускается, чтобы один человек одновременно осматривал не более двух головных или уравновешивающих канатов. Когда на одно прицепное устройство навешены два резинотросовых уравновешивающих каната, их осмотр может проводить один человек;

еженедельно - уравновешивающие канаты подъемных установок с машинами барабанного типа, тормозные и проводниковые канаты, канаты для подвески полков, кабеля и проходческого оборудования, а также подъемные и уравновешивающие резинотросовые канаты с участием механика подъема (старшего механика);

ежемесячно - амортизационные и отбойные канаты, подъемные и уравновешивающие канаты, включая участки крепления каната, с участием главного механика или старшего механика угледобывающей организации; канаты, постоянно находящиеся в стволах, с участием механика проходки или старшего механика строящейся шахты.

372. Все канаты осматривают по всей длине при скорости движения не более 0,3 м/с.

Поврежденные участки канатов, а также стыковые соединения резинотросовых канатов осматривают при неподвижном канате.

На подъемных установках ежесуточный осмотр канатов, у которых число оборванных проволок не превышает 2% общего числа проволок каната на длине одного шага свивки, проводят при скорости движения не более 1 м/с. На многоканатных подъемных установках вышеуказанный осмотр проводят несколько работников, при этом один работник осматривает не более двух смежных канатов. Еженедельно проводят осмотр всех канатов при скорости движения не более 0,3 м/с.

- 373. Запрещается эксплуатация стальных прядевых канатов шахтных подъемных установок при наличии на каком-либо участке обрывов проволок, число которых на шаге свивки от общего их числа в канате достигает:
- 10% для канатов грузовых наклонных подъемов с углом наклона до 30° , уравновешивающих, тормозных, амортизационных, проводниковых, отбойных канатов;
- 5% для подъемных канатов остальных подъемов, канатов для подвески полков и механических грузчиков (грейферов).

В книге осмотра канатов и их расхода отмечают наиболее поврежденный участок (шаг), на котором число оборванных проволок превышает 2% общего числа проволок каната.

374. Запрещается эксплуатация подъемных канатов закрытой конструкции при:

износе проволок наружного слоя более чем на половину высоты;

нарушении замка наружных проволок фасонного профиля (расслоение проволок);

выходе проволоки из замка на поверхность каната, если она не поддается заделке в канат или запайке;

наличии трех оборванных проволок, считая и запаянные, фасонного профиля наружного слоя на длине участка, равного пяти шагам их свивки или двенадцати - на всей рабочей длине каната.

Допускается эксплуатация канатов, имеющих волнообразные участки без нарушения замка наружных проволок и сохраняющих гладкую поверхность до явного нарушения замка (расслоение) наружных проволок или выхода одной проволоки из замка на указанном участке. Допускается одну наружную (зетобразную) проволоку в случае выхода ее из замка на прямолинейном канате (как при отсутствии, так и при наличии обрыва) выплести по всей длине каната и продолжить его эксплуатацию, если появившийся зазор в слое наружных проволок не приведет к нарушению замка между ними.

375. Проводниковые канаты подлежат замене:

при износе на 15% номинального диаметра, но не более половины высоты или диаметра наружных проволок;

если на 100 м длины каната закрытой конструкции обнаружено два обрыва наружных проволок.

Если при обрыве наружные проволоки в канате закрытой конструкции выходят из замка, то их необходимо запаять.

376. Канаты заменяют по истечении предельного срока службы в соответствии с требованиями, приведенными в приложении N 12 к настоящим Правилам.

Решение о продлении срока службы каната принимает комиссия, возглавляемая главным механиком шахты. Этой же комиссией срок службы канатов, проработавших срок, указанный в приложении N 12 к настоящим Правилам, может быть продлен на основании заключения экспертной организации по результатам дефектоскопии, анализа динамики работы подъемной установки и определения остаточной долговечности каната.

377. При навеске канатов на многоканатной подъемной установке, а также не реже одного раза в неделю необходимо производить контроль распределения нагрузки между канатами. После навески канатов до прекращения интенсивной вытяжки канатов (не менее двух недель работы подъема) контроль распределения нагрузки осуществляют ежедневно. Если относительная перегрузка одного из канатов многоканатной подъемной установки в нижнем положении подъемных сосудов превышает 15% или в верхнем - 25%, то подъемную установку останавливают для регулировки распределения нагрузки на канаты.

378. Канаты вспомогательного транспорта подлежат осмотру:

ежесуточно назначенным лицом - канаты пассажирских подвесных канатных и грузолюдских монорельсовых и напочвенных дорог, канаты вспомогательных лебедок в наклонных горных выработках;

еженедельно специалистом участка - канаты пассажирских подвесных канатных дорог, бесконечных откаток, монорельсовых и напочвенных дорог, канаты скреперных, маневровых и вспомогательных лебедок;

один раз в полгода лицом, назначенным главным механиком шахты, - канаты пассажирских подвесных дорог, монорельсовых и напочвенных дорог.

Канаты дорог и лебедок в горизонтальных и наклонных горных выработках осматривают по всей длине при скорости движения не более $0,3\,\mathrm{m/c}$.

Осмотр канатов на действующих дорогах, имеющих скорость менее 0,3 м/с, а также канатов лебедок с нерегулируемой скоростью проводят при остановленном канате путем его обхода.

- 379. Запрещается эксплуатация стальных прядевых канатов вспомогательного транспорта при наличии на каком-либо участке обрывов проволок, число которых на шаге свивки от общего числа в канате достигает:
- 5% для канатов подземных пассажирских подвесных канатных, монорельсовых и напочвенных дорог;
 - 15% для канатов грузовых лебедок в наклонных горных выработках;
- 25% для канатов бесконечных откаток по наклонным горным выработкам, канатов скреперных, маневровых и вспомогательных (по горизонтальным горным выработкам) лебедок.
- 380. Канаты для перемещения и удержания забойного оборудования проверяют ежесменно перед началом работы машинист или его помощник.

Еженедельно проводит проверку этих канатов механик участка, при этом определяет максимальное число обрывов на шаге свивки.

Канаты заменяют, если на шаге свивки число обрывов проволок достигает 10% общего их числа.

XLI. ИНСТРУМЕНТАЛЬНЫЙ КОНТРОЛЬ

381. Подъемные прядевые канаты, эксплуатирующиеся в вертикальных стволах и на людских и грузолюдских подъемах в наклонных горных выработках, канаты для подвески полков при проходке стволов глубиной более 600 м и канаты для подвески стволопроходческих комбайнов, навешиваемые с запасом прочности менее 6-кратного, подвергают инструментальному контролю для определения по всей их длине потери сечения стали проволок персоналом специализированных организаций. При навеске канатов, подвергающихся инструментальному контролю, в том числе и при продлении срока службы в порядке и по условиям, приведенным в приложении N 12 к настоящим Правилам, от них отрезают контрольные отрезки, которые хранят в здании подъема в течение всего срока службы каната.

Сроки проведения (периодичность) инструментального контроля приведены в приложении N 12 к настоящим Правилам.

- 382. Канаты снимают и заменяют новыми при потере сечения стали проволок, достигающей:
- 10% для подъемных канатов в вертикальных стволах с длиной отвеса более 900 м, для подъемных канатов людских и грузолюдских, двухканатных и трехканатных подъемных установок, не оборудованных парашютами, полковых канатов, навешиваемых с запасом прочности менее 6-кратного, при полиспастной схеме подвески полков, а также для тормозных канатов парашютов;
- 15% для подъемных канатов с металлическим сердечником, трехграннопрядных, с круглыми пластически обжатыми прядями, для канатов всех конструкций в вертикальных стволах с длиной отвеса до 900 м;
- 18% для круглопрядных канатов с органическим сердечником на вертикальных и наклонных людских и грузолюдских подъемах, а также диаметром 45 мм и менее на грузовых подъемах, а также для проводниковых канатов при строительстве и эксплуатации шахт и канатов для подвески проходческого оборудования;
- 20% для круглопрядных канатов диаметром более 45 мм с органическим сердечником на вертикальных грузовых подъемах с запасом прочности не менее 6,5-кратного, для отбойных канатов и канатов для подвески полков;
 - 24% для уравновешивающих канатов.
- 383. Целостность тросов резинотросовых уравновешивающих канатов определяют при проведении инструментального контроля.

XLII. ПОДВЕСНЫЕ И ПРИЦЕПНЫЕ УСТРОЙСТВА

384. Клети людских и грузолюдских подъемов имеют двойную независимую подвеску - рабочую и предохранительную.

При креплении сосудов и противовесов к канатам не менее чем в двух точках предохранительную подвеску на многоканатных подъемах не оборудуют. Противовесы одноканатных подъемов предохранительной подвеской не оборудуют.

Круглые уравновешивающие канаты прикрепляют к сосуду посредством вертлюжных устройств.

- 385. Запас прочности подвесных и прицепных устройств при навеске (по отношению к расчетной статической нагрузке) должен быть не менее:
- 13-кратного для подвесных и прицепных устройств людских подъемных установок, а также для прицепных устройств и дужек проходческих бадей;

10-кратного - для подвесных и прицепных устройств сосудов вертикальных и наклонных подъемов грузолюдского и грузового назначения, монорельсовых и напочвенных дорог, прицепных устройств стволового проходческого оборудования (полков, опалубок) и уравновешивающих канатов подъемных установок. При этом подвесные и прицепные устройства грузолюдских подъемных установок обеспечивают 13-кратный запас прочности по отношению к расчетной статической нагрузке с максимальным количеством спускаемых людей. Запас прочности прицепных устройств для уравновешивающих канатов определяют по отношению к их весу;

6-кратного - для прицепных устройств проводниковых и отбойных канатов, сцепных устройств вагонеток и прицепных устройств при откатке бесконечным канатом;

4-кратного по отношению к пределу текучести материала - для прицепных устройств типа "баранчик" при откатке бесконечным канатом.

386. Прицепные устройства обеспечивают прочность закрепленного в нем каната не менее 85% агрегатной прочности нового каната.

На эксплуатационных подъемно-транспортных установках срок службы подвесных и прицепных устройств составляет не более пяти лет (на аварийно-ремонтных, а также подъемных установках фланговых и вентиляционных стволов, служащих для перевозки людей в аварийных случаях, - не более семи лет), а прицепных устройств бадей и дужек бадей - не более двух лет. Решением комиссии, возглавляемой главным механиком шахты, по результатам инструментальной проверки с применением методов неразрушающего контроля срок службы подвесных и прицепных устройств может быть продлен для эксплуатационных установок на два года, а для прицепных устройств дужек проходческих бадей - на один год.

Этой же комиссией срок службы подвесных и прицепных устройств, проработавших более семи лет, может быть продлен на основании заключения экспертной организации по результатам дефектации и дефектоскопии элементов подвесных (прицепных) устройств, анализа динамики подъемной установки и определения остаточной долговечности устройств. Максимальный срок службы подвесных и прицепных устройств с учетом продлений не превышает 11 лет.

Дужка бадьи подлежит замене или ремонту при износе ее проушины или сменной втулки в проушине более чем на 5% диаметра оси.

Суммарный износ проушины или сменной втулки дужки и оси, соединяющей ее с бадьей, не должен превышать 10% диаметра оси.

Прицепные устройства бадей имеют приспособления, надежно закрывающие зев крюка во время движения бадьи и исключающие ее самопроизвольную отцепку.

Подвесные и прицепные устройства всех типов должны быть заводского изготовления и иметь маркировку с указанием заводского номера и даты изготовления.

Запрещается применение в качестве предохранительных подвесок цепей, изготовленных методом кузнечной сварки или ручной электросварки.

387. При проведении наклонных или вертикальных горных выработок подвесные устройства испытывают на двойную концевую нагрузку при навеске и через каждые шесть месяцев при их эксплуатации.

Прицепные устройства при откатке концевым канатом по наклонным горным выработкам испытывают после завершения работ по креплению каната к прицепным устройствам путем спуска и подъема максимального груза.

Результаты испытаний фиксируют документально в порядке, утвержденном руководителем шахты.

388. Подвесные устройства проходческого оборудования и все узлы крепления канатов в стволе еженедельно осматривает дежурный слесарь, два раза в месяц - специалист производственного участка и один раз в месяц - главный механик организации, выполняющей работы по проведению наклонных или вертикальных горных выработок.

Если в процессе эксплуатации подвесное устройство подверглось воздействию экстремальных нагрузок, работу немедленно прекращают в целях его осмотра.

Результаты осмотра и меры, принятые для устранения неисправностей, фиксируют документально в порядке, утвержденном руководителем шахты.

XLIII. КОМПРЕССОРНЫЕ УСТАНОВКИ И ВОЗДУХОПРОВОДЫ

- 389. Подземные стационарные и передвижные компрессорные установки и воздухопроводы в горных выработках шахты размещают и эксплуатируют в соответствии с эксплуатационной документацией угледобывающей организации и технической документацией изготовителя.
- 390. Подземные передвижные компрессорные установки оборудуют тепловой защитой, от-ключающей компрессор сухого сжатия при температуре сжатого воздуха более $182~^{\circ}$ C, а маслозаполненный при температуре более $125~^{\circ}$ C.

Рабочее давление сжатого воздуха компрессоров не должно превышать 0,8 МПа (8 кгс/см2). Предохранительный клапан компрессора настраивают на давление срабатывания 0,88 МПа (8,8 кгс/см2) и пломбируют.

- 391. В помещениях компрессорных установок запрещается хранение материалов, инструментов и других посторонних предметов.
- 392. Подземную передвижную компрессорную установку размещают на горизонтальной площадке на свежей струе воздуха в местах с негорючей крепью. Расстояние от компрессорной установки до мест погрузки угля должно быть не менее 30 м.
- 393. Применяют передвижные компрессорные установки в тупиковых горных выработках шахт, опасных по газу и пыли, при соблюдении следующих условий:

наличие автоматической пожаротушащей установки;

наличие блокировки, обеспечивающей автоматическое отключение электрической энергии на компрессорной установке при работе проходческого комбайна, погрузочной машины;

воздушный фильтр компрессора оборудован индикатором заполнения фильтра и должен обеспечивать очистку воздуха на 99% при концентрации в нем пыли 30 мг/м3;

унос масла при работе компрессора не должен превышать 0,02 г/м3;

первый от коллектора раздачи участок пневмопровода длиной 3 м должен быть быстроразъемный для проведения очистки нагара внутри него. Очистку быстроразъемного участка пневмопровода от нагара проводят еженедельно;

применяемое для смазки и охлаждения компрессора масло должно иметь температуру воспламенения не ниже $200\,^{\circ}\mathrm{C}$;

компрессорная установка должна иметь не менее трех ступеней тепловой защиты, одна из которых - электродвигателя.

В местах расположения компрессорной установки силовые кабели и кабели связи прокладывают на противоположной стороне горной выработки и защищают от повреждений.

С обеих сторон установки располагают ящики с песком или инертной пылью вместимостью не менее 0,4 м3 и по пять порошковых огнетушителей.

- 394. Все движущиеся и вращающиеся части компрессоров, электродвигателей и других механизмов ограждают.
 - 395. Корпуса компрессоров, холодильников и влагомаслоотделителей заземляют.
 - 396. Компрессорные установки оснащают контрольно-измерительными приборами:

манометрами, устанавливаемыми после каждой ступени сжатия и на линии нагнетания после компрессора, а также на воздухосборниках или газосборниках; при давлении на последней ступени сжатия 300 кгс/см2 и выше устанавливают два манометра;

термометрами или другими датчиками для указания температуры сжатого воздуха или газа, устанавливаемыми на каждой ступени компрессора, после промежуточных и концевого холодильников, а также на сливе воды приборами для измерения давления и температуры масла, поступающего для смазки механизма движения.

397. Подземные компрессорные установки обслуживает персонал, обученный безопасным методам работы с компрессорными установками.

Подземную передвижную компрессорную установку осматривает ежедневно, а установленную в тупиковой горной выработке - ежесменно персонал, ответственный за ее безопасную эксплуатацию; не реже одного раза в неделю - механик участка; не реже одного раза в квартал - главный механик или старший механик шахты.

- 398. Результаты осмотра, очистки быстроразъемного участка пневмопровода от нагара и замены (очистки) воздушного и масляного фильтров фиксируют в книге осмотра работы компрессорной установки.
- 399. Запрещается включение и работа подземной передвижной компрессорной установки при:

содержании метана в месте расположения установки более 1,0%;

отсутствии или неисправности тепловой защиты;

неисправности регулятора производительности, предохранительных клапанов, манометров и термометров;

течи масла;

обратном вращение винтов компрессора;

засоренных воздушном и масляном фильтрах.

- 400. В качестве прокладочных материалов для фланцевых соединений воздухопроводов следует применять паронит, асбест или другие материалы с температурой тления не ниже 350 °C.
 - 401. Эксплуатация поврежденных воздухопроводов запрещается.

XLIV. ЭЛЕКТРОТЕХНИЧЕСКОЕ ХОЗЯЙСТВО

402. Для электроснабжения шахтных электроустановок используют сети с изолированной или заземленной через резистор нейтралью трансформаторов.

При электроснабжении электроустановок зданий технологического комплекса на поверхности, примыкающих к горным выработкам, напряжением 380 В (220 В) применяют систему заземления с автоматическим отключением питания при повреждении и защитным уравниванием потенциалов.

403. В угледобывающих организациях один раз в год разрабатывает и утверждает главный энергетик шахты общую однолинейную схему электроснабжения потребителей напряжением 6000 (10000) В. На схеме указывают значения токов короткого замыкания, величины уставок срабатывания устройств максимальной токовой защиты, марки и длины кабелей. Для угледобывающей организации с разветвленной системой горных выработок допускается составление схемы из отдельных частей.

Выбор и проверку электрических аппаратов и кабелей напряжением 6000 (10000) В выполняют в соответствии с Федеральными нормами и правилами в области промышленной безопасности "Инструкция по выбору и проверке электрических аппаратов и кабелей напряжением 6 (10) кВ", утвержденными приказом Ростехнадзора от 6 ноября 2012 г. N 630 (зарегистрирован Министерством юстиции Российской Федерации 9 апреля 2013 г., регистрационный N 28067; Бюллетень нормативных актов федеральных органов исполнительной власти, 2013, N 20) (далее - Инструкция по выбору и проверке электрических аппаратов и кабелей напряжением 6(10) кВ).

404. На выемочных и подготовительных участках разрабатывают структурные схемы электроснабжения и управления очистным (проходческим) комплексом или комбайном, на которых указаны состав и размещение в горных выработках (в лавах и на штреках) коммутационной аппаратуры, собранной в распределительный пункт (далее - РП), и отдельно от него - машины, оборудование, кабели, пульты, датчики и исполнительные устройства стационарной автоматической аппаратуры газового контроля, направление и характеристика (поступающая, исходящая) вентиляционной струи.

Изменения в схему электроснабжения вносят не позднее чем на следующие сутки.

Электроснабжение, выбор и проверку электрических аппаратов, кабелей и устройств релейной защиты в участковых сетях угольных шахт напряжением до 1200 В выполняют в соответствии с Федеральными нормами и правилами в области промышленной безопасности "Инструкция по электроснабжению, выбору и проверке электрических аппаратов, кабелей и устройств релейной защиты в участковых сетях угольных шахт напряжением до 1200 В", утвержденными приказом Ростехнадзора от 6 ноября 2012 г. N 627 (зарегистрирован Министерством юстиции Российской Федерации 11 февраля 2013 г., регистрационный N 26995; Бюллетень нормативных актов федеральных органов исполнительной власти, 2013, N 16) (далее - Инструкция по электроснабжению, выбору и проверке электрических аппаратов, кабелей и устройств релейной защиты в участковых сетях угольных шахт напряжением до 1200 В).

405. Наладку, испытания, ремонт и ревизии коммутационных аппаратов, передвижных трансформаторных подстанций и электроблоков забойных машин проводят по технической документации изготовителя.

В шахтах, опасных по газу, перед началом данных работ осуществляют контроль содержании метана индивидуальными автоматическими приборами. Проверку изоляции и поиск повреждений силовых кабелей проводят при содержании метана не более 1% в горных выработках, по которым они проложены.

406. Коммутационный аппарат, комплектное распределительное устройство (далее - КРУ), силовой вывод станции управления обозначают надписью, указывающей включаемую установку или участок, а также расчетную величину уставки срабатывания максимальной токовой защиты.

Крышки отделений аппаратуры, содержащих электрические защиты, устройства блокировки и регулировки, пломбируют именными пломбами.

407. Запрещается:

обслуживать и ремонтировать электрооборудование и сети без приборов и инструмента, предназначенных для этих целей;

проводить оперативное обслуживание электроустановок напряжением выше 1200 В без защитных средств (диэлектрических перчаток, бот или изолирующих площадок);

проводить оперативное обслуживание электроустановок, не защищенных аппаратами защиты от утечек тока, без диэлектрических перчаток, за исключением электрооборудования напряжением 42 В и ниже, а также электрооборудования с искробезопасными цепями и аппаратуры телефонной связи;

ремонтировать электрооборудование и кабели, находящиеся под напряжением, присоединять и отсоединять искроопасные электрооборудование и электроизмерительные приборы под напряжением, за исключением устройств напряжением 42 В и ниже, в шахтах, не опасных по газу или пыли, и такие же устройства с искробезопасными цепями в шахтах, опасных по газу или пыли;

эксплуатировать электрооборудование при неисправных средствах взрывозащиты, блокировках, заземлении, аппаратах защиты, нарушении схем управления, защиты и поврежденных кабелях;

держать под напряжением неиспользуемые электрические сети, за исключением резервных;

открывать крышки оболочек взрывобезопасного электрооборудования в газовых шахтах без предварительного снятия напряжения со вскрываемого отделения оболочки и замера содержания метана (не более 1%);

изменять заводскую конструкцию и схему электрооборудования, схемы аппаратуры управления, защиты и контроля без согласования с изготовителем;

снимать с аппаратов знаки, надписи и пломбы персоналу, не уполномоченному на эти действия;

включать электрическую сеть с разрывами шланговых оболочек и повреждениями изоляции жил кабелей.

XLV. ОБЛАСТЬ И УСЛОВИЯ ПРИМЕНЕНИЯ ЭЛЕКТРООБОРУДОВАНИЯ

408. В подземных горных выработках шахт, опасных по газу или пыли, в стволах с исходящей струей воздуха этих шахт и в надшахтных зданиях, примыкающих к этим стволам, а также в стволах со свежей струей воздуха и примыкающих к ним надшахтных зданиях шахт, опасных по внезапным выбросам угля, породы и газа, если не исключено проникновение шахтного воздуха в эти здания, применяют рудничное взрывозащищенное электрооборудование (далее - PB).

Электрооборудование с автономными источниками питания, неотключаемое системой аэрогазовой защитой, в том числе переносные электронные средства измерения и контроля, средства связи, фото- и видеотехника, должны иметь исполнения РО. Электрооборудование искробезопасных электрических систем и волоконно-оптических систем связи, устанавливаемое на поверхно-

сти угольных шахт и связанное с электрооборудованием, установленным в подземных горных выработках, должно иметь входные и выходные искробезопасные электрические и оптические цепи РО.

409. На шахтах, опасных по газу или пыли, в помещениях вентиляционных и калориферных установок допускается применение электрооборудования общего назначения при условии, что в эти помещения не попадают рудничный воздух и угольная пыль.

При этом же условии допускается применение электрооборудования общего назначения в электромашинных помещениях подъемных установок, располагаемых на копрах стволов с исходящей струей воздуха, шахт, опасных по газу или пыли.

410. Электровозы в исполнении РВ оснащают автоматической газовой защитой.

Аккумуляторные электровозы с уровнем взрывозащиты "повышенная надежность против взрыва" (далее - исполнение РП) и в рудничном нормальном исполнении (далее - исполнение РН) допускается использовать в откаточных горных выработках шахт, не опасных по газу или пыли.

411. Применение в подземных горных выработках шахт, опасных по газу или пыли, электрооборудования в исполнении РН, в том числе периодическое применение переносных электрических приборов в исполнении РП, РН или общего назначения, в том числе средств связи, фото- и видеотехники, осуществляют в соответствии с Федеральными нормами и правилами в области промышленной безопасности "Инструкция по применению электрооборудования в рудничном нормальном исполнении и электрооборудования общего назначения в шахтах, опасных по газу и пыли", утвержденными приказом Федеральной службы по экологическому, технологическому и атомному надзору от 6 ноября 2012 г. N 629 (зарегистрирован Министерством юстиции Российской Федерации 29 декабря 2012 г., регистрационный N 26464).

В месте проведения работ осуществляется контроль содержания метана индивидуальными автоматическими приборами, максимальная концентрация метана не должна превышать 1%.

- 412. В горных выработках шахт, не опасных по газу или пыли, допускается применение электрооборудования в исполнении РП.
- 413. В зарядных камерах с обособленным проветриванием в шахтах, опасных по газу или пыли, в том числе опасных по внезапным выбросам, применяют электрооборудование в исполнении не ниже РП. При этом воздушная струя, проветривающая заряжаемые батареи, не должна омывать электрооборудование зарядной камеры.

Измерительными приборами общего назначения разрешается пользоваться в горных выработках шахт, не опасных по газу или пыли.

На ликвидируемых и ликвидированных шахтах, опасных по газу и пыли, для водопонизительных установок в скважинах и стволах допускается применение погружных насосов с электродвигателями общего назначения.

XLVI. ЭЛЕКТРИЧЕСКИЕ ПРОВОДКИ

- 414. Для передачи или распределения электрической энергии и информации в подземных горных выработках следует применять кабели и провода, не распространяющие горение.
- 415. Для стационарной прокладки применяют бронированные бумажно-масляные и экранированные кабели с медными жилами в изоляции из сшитого полиэтилена, поливинилхлоридного пластиката или резины.

При прокладке по капитальным и основным вертикальным и наклонным горным выработкам, скважинам с углом наклона более 45° применяют бронированные кабели с проволочной броней, а также бронированные кабели с ленточной броней при креплении их к стальному тросу.

Для горизонтальных и наклонных горных выработок, проведенных под углом до 45° включительно, допускается применение бронированных кабелей с ленточной броней.

Допускается присоединение стационарно установленных электродвигателей к пусковым аппаратам гибкими экранированными кабелями, если вводные устройства этих двигателей предназначены только для гибкого кабеля.

Выбор и проверку кабельной сети напряжением 6000 (10000) В осуществляют в соответствии с Инструкцией по выбору и проверке электрических аппаратов и кабелей напряжением 6 (10) кВ.

- 416. Для присоединения передвижных трансформаторных подстанций, РП участков и осветительных сетей применяют бронированные или гибкие экранированные кабели.
- 417. Присоединение передвижных машин и механизмов в очистных или подготовительных забоях, а также на участках горных выработок, отнесенных к опасным по слоевым скоплениям метана, выполняют гибкими кабелями, конструкция которых обеспечивает при повреждении наружной оболочки кабеля отключение (снятие напряжения) с кабеля до повреждения изоляции основных жил и возникновения короткого замыкания.

Выбор и проверку кабельной сети низкого напряжения осуществляют в соответствии с Инструкцией по электроснабжению, выбору и проверке электрических аппаратов, кабелей и устройств релейной защиты в участковых сетях угольных шахт напряжением до 1200 В.

Для шахтных участковых сетей напряжением 3300 В выбор и проверку кабельной сети выполняют в соответствии с Методическими указаниями по электроснабжению, выбору и проверке электрических аппаратов, кабелей и устройств релейной защиты в участковых сетях угольных шахт (рудников) напряжением 3300 В, утвержденными приказом Ростехнадзора от 28 июня 2011 г. N 325 (зарегистрирован Министерством юстиции Российской Федерации 6 декабря 2011 г., регистрационный N 22512; Бюллетень нормативных актов федеральных органов исполнительной власти, 2012, N 7) (далее - Методические указания по электроснабжению, выбору и проверке электрических аппаратов, кабелей и устройств релейной защиты в участковых сетях угольных шахт (рудников) напряжением 3300 В).

418. Для контрольных цепей, цепей управления и сигнализации при стационарной прокладке по вертикальным и наклонным горным выработкам с углом наклона более 45° применяют контрольные кабели оптоволоконные или с медными жилами с оболочкой из поливинилхлоридного пластиката с проволочной броней, а также с ленточной броней при креплении их к стальному тросу.

В горизонтальных горных выработках следует применять контрольные кабели бронированные и гибкие с медными жилами или оптоволоконные.

Для контрольных цепей, цепей управления и сигнализации передвижных машин и механизмов применяют гибкие кабели, вспомогательные жилы или оптоволокно силовых гибких кабелей.

- 419. Для линий телефонной и диспетчерской связи необходимо применять шахтные телефонные кабели с медными жилами и оптоволокно. Для местных линий связи в забоях допускается применение гибких контрольных кабелей.
- 420. Для искробезопасных цепей управления, связи, сигнализации, телеконтроля и диспетчеризации допускается применение отдельных шахтных телефонных кабелей и свободных жил в кабельных линиях связи.

Допускается применение неизолированных проводов (кроме алюминиевых) для линий сигнализации и аварийной остановки электроустановок при напряжении не выше 24 В. В шахтах, опасных по газу или пыли, дополнительным условием их применения является обеспечение искробезопасности.

- 421. Вспомогательные жилы в силовых экранированных кабелях допускается использовать для цепей управления, связи, сигнализации и местного освещения. Использование вспомогательных жил одного кабеля для искробезопасных и искроопасных цепей не допускается, если эти жилы не разделены экранами.
- 422. Запрещается применение кабелей всех назначений (силовых, контрольных) с алюминиевыми жилами или в алюминиевой оболочке в подземных горных выработках шахт.
- 423. Запрещается прокладка силовых кабелей по наклонным стволам, бремсбергам и уклонам, подающим струю свежего воздуха и оборудованным рельсовым транспортом с шахтными грузовыми вагонетками, за исключением случаев, когда указанный транспорт используют только для доставки оборудования, материалов и выполнения ремонтных работ. Это запрещение относится также к вертикальным стволам с деревянной крепью.
- 424. Допускается соединение отдельных отрезков кабеля с помощью взрывобезопасных устройств.

Допускается соединение между собой гибких кабелей, требующих разъединения в процессе работы, линейными соединителями напряжения при условии применения искробезопасных схем дистанционного управления с защитой от замыкания в цепи управления.

Контактные пальцы соединителей напряжения при размыкании цепи, за исключением искробезопасных цепей напряжением не выше 42 В, должны оставаться без напряжения, для чего их монтируют на кабеле со стороны электроприемника (электродвигателя).

- 425. Допускается соединение и ремонт (восстановление) гибких и бронированных кабелей в шахтах с помощью горячей вулканизации и комплектов починочных материалов из компаундов и трубок холодной усадки.
- 426. Для питающих кабельных линий напряжением до 3300 В, по которым проходит суммарный ток нагрузки потребителей, применяют кабели одного сечения. Для этих линий допускается применение кабелей с различными сечениями жил при условии обеспечения всех участков линии защитой от токов короткого замыкания.

В местах ответвления от магистральной питающей линии, где сечение жил кабеля уменьшается, устанавливают аппарат защиты от токов короткого замыкания ответвления. Допускается иметь ответвления от питающей линии длиной до 20 м, если обеспечена защита от токов короткого замыкания аппаратом магистральной линии.

Применение распределительных коробок без установки на ответвлениях к электродвигателям аппаратов защиты допускается только для многодвигательных приводов при условии, если кабель каждого ответвления защищен от токов короткого замыкания групповым защитным аппаратом.

427. Кабели, прокладываемые в лавах, должны быть защищены от механических повреждений устройствами, входящими в состав комплекса.

Ближайшая к машине часть гибкого кабеля, питающего передвижные машины, может быть проложена по почве на протяжении не более 30 м.

Для машин, имеющих кабелеподборщик или другие аналогичные устройства, допускается прокладка гибкого кабеля по почве горной выработки.

При работе комбайнов на пластах мощностью до 1,5 м допускается прокладка гибкого кабеля по почве лавы, если конструкцией этих машин не предусмотрен кабелеукладчик.

428. Гибкие кабели, находящиеся под напряжением, прокладывают и подвешивают. Запрещается укладывать гибкие кабели под напряжением в бухтах.

Это запрещение не распространяется на экранированные, не распространяющие горения кабели с оболочками, которые по условиям эксплуатации находятся в бухтах или на барабанах. В этом случае токовая нагрузка на кабель снижается на 30% номинальной.

429. Очистные комбайны оснащают электрической блокировкой от выдергивания из вводного устройства электроблока (или из электрического соединителя) питающего кабеля с автоматической остановкой движения комбайна или отключением подачи напряжения.

XLVII. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ И АППАРАТЫ

430. Электроснабжение машин и аппаратов осуществляют напряжением сети для:

стационарных приемников электрической энергии, передвижных подстанций и трансформаторов - не выше 10000 В;

передвижных электроприемников - не выше 3300 В. Применение напряжения 10000 В или 6000 В для передвижных электроприемников допускается в режиме опытно-промышленных испытаний;

ручных машин и инструментов - не выше 220 В;

цепей дистанционного управления и сигнализации КРУ - не выше 60 В, если ни один из проводников этой цепи не присоединяют к заземлению;

цепей дистанционного управления стационарными и передвижными машинами и механизмами - не выше 42 В.

431. Мощность короткого замыкания в подземной сети шахты должна быть ограничена величиной, соответствующей номинальным характеристикам установленного в шахте электрооборудования и сечению кабелей, и не должна превышать 100 MBA.

Мощность отключения выключателей КРУ общего назначения при их установке в шахтах должна быть в два раза выше мощности короткого замыкания сети.

- 432. Кабельные вводы электрооборудования уплотняют. Неиспользованные кабельные вводы закрывают заглушками, соответствующими уровню взрывозащиты электрооборудования.
- 433. Присоединение жил кабелей к зажимам электрооборудования осуществляют посредством наконечников, специальных шайб или других равноценных приспособлений, исключающих наличие проволок жил кабеля вне зажима.

Запрещается присоединение нескольких жил кабелей к одному зажиму, если это не предусмотрено конструкцией зажима.

XLVIII. КАМЕРЫ ДЛЯ ЭЛЕКТРИЧЕСКИХ МАШИН И ПОДСТАНЦИЙ

434. Запрещается применять в подземных горных выработках коммутационные и пусковые аппараты и силовые трансформаторы, содержащие горючую техническую жидкость. Это требование не распространяется на КРУ, установленные в камерах, закрепленные с высшей степенью огнестойкости материалами.

Запрещается сооружение между параллельными горными выработками камер для КРУ с масляным заполнением. В камерах между параллельными горными выработками следует устанавливать КРУ с электромагнитными или вакуумными безмасляными выключателями.

435. Во всех камерах, где установлено электрооборудование с масляным заполнением, устраивают решетчатые и сплошные противопожарные двери. В остальных камерах устраивают решетчатые двери с запорным устройством. Двери камер, в которых нет постоянного обслуживающего персонала, закрывают. У входа в камеру вывешивают аншлаг "Вход посторонним запрещается", а в камере на видном месте устанавливают соответствующие предупредительные знаки.

В камерах, где установлено электрооборудование с масляным заполнением, устраивают порог высотой не менее 100 мм.

- 436. В камерах подстанций и электромашинных камерах длиной более 10 м устраивают два выхода, расположенные в наиболее удаленных друг от друга частях камеры.
- 437. Между машинами и аппаратами в камерах обеспечивают проходы, достаточные для транспортирования машин и аппаратов при их ремонте или замене, но не менее 0,8 м. Со стороны стен камер обеспечивают монтажные проходы шириной не менее 0,5 м.

Если не требуется доступ к машинам или аппаратам с тыльной и боковой сторон для обслуживания, монтажа и ремонта, их можно устанавливать вплотную друг к другу и к стене камеры.

Расстояние от верхней части аппарата до кровли не менее 0,5 м.

438. Передвижные трансформаторные подстанции, комплектные распределительные устройства размещают в хорошо закрепленных и удобных для обслуживания местах, защищают от капежа и механических повреждений. Расстояние от электрооборудования до подвижного состава или конвейера должно быть не менее 0,8 м, до борта горной выработки и до кровли - не менее 0,5 м. Запрещается установка подстанций в уклонах, оборудованных рельсовым транспортом, за исключением ниш и заездов, защищенных барьером и ловителем.

В отдельных случаях допускается установка комплектного электрооборудования над скребковым конвейером, если это предусмотрено конструкцией. Зазор между электрооборудованием и кровлей в этом случае должен быть достаточным для обслуживания, но не менее 0,5 м, между верхней кромкой борта конвейера и полком - не менее 0,4 м.

В этих местах в кровле не должно быть куполов и других факторов, способствующих образованию местных (слоевых) скоплений метана.

XLIX. ЗАЩИТА КАБЕЛЕЙ, ЭЛЕКТРОДВИГАТЕЛЕЙ И ТРАНСФОРМАТОРОВ ОТ ЗАМЫКАНИЙ

- 439. В подземных сетях напряжением выше 6000 (10000) В осуществляют защиту линий, трансформаторов (передвижных подстанций) и электродвигателей от межфазных коротких замыканий и однофазных замыканий на землю.
- 440. Выбор и проверку электрических аппаратов защиты в подземных сетях напряжением выше 6000 (10000) В осуществляют в соответствии с Инструкцией по выбору и проверке электрических аппаратов и кабелей напряжением 6 (10) кВ.
- 441. На строящихся и реконструируемых шахтах установку защиты от замыканий на землю обеспечивают и на линиях, питающих ЦПП.
- 442. Выбор и проверку электрических аппаратов и устройств релейной защиты в шахтных участковых сетях напряжением 3300 В выполняют в соответствии с Методическими указаниями

по электроснабжению, выбору и проверке электрических аппаратов, кабелей и устройств релейной защиты в участковых сетях угольных шахт (рудников) напряжением 3300 В.

- 443. Общая длина кабелей, присоединенных к одному или параллельно работающим трансформаторам, ограничивается емкостью относительно земли величиной не более 1 мкФ на фазу.
- 444. При питании подземных электроприемников с поверхности через скважины допускается установка автоматического выключателя с аппаратом защиты под скважиной на расстоянии не более 10 м от нее. В этом случае при срабатывании аппарата защиты электроприемники на поверхности и кабель в скважине могут не отключаться, если на поверхности имеется устройство контроля изоляции сети, не влияющее на работу аппарата защиты, а электроприемники имеют непосредственное отношение к работе шахты (вентиляторы, лебедки) и присоединяются посредством кабелей.
- 445. Защита от замыканий на землю и контроля изоляции сети можно не применять для цепей напряжением не более 42 В, цепей дистанционного управления и блокировки КРУ, а также для цепей местного освещения передвижных подстанций, питающихся от встроенных осветительных трансформаторов, при условии металлического жесткого или гибкого наружного соединения их с корпусом подстанции, наличия выключателя в цепи освещения и надписи на светильниках "Вскрывать, отключив от сети".
- 446. Требование защиты от замыканий на землю и контроля изоляции сети не распространяется на искробезопасные системы.

L. ЭЛЕКТРОСНАБЖЕНИЕ УЧАСТКА И УПРАВЛЕНИЕ МАШИНАМИ

- 447. Электроснабжение подземного участка по добыче угля и проходке горных выработок осуществляют в соответствии с Инструкцией по электроснабжению, выбору и проверке электрических аппаратов, кабелей и устройств релейной защиты в участковых сетях угольных шахт напряжением до 1200 В и Инструкцией по электроснабжению и применению электрооборудования в проветриваемых ВМП тупиковых выработках шахт, опасных по газу.
- 448. Для присоединения к сети передвижных подстанций и трансформаторов, устанавливаемых в горных выработках с исходящей струей воздуха шахт, опасных по газу или пыли, применяются КРУ с блоком реле утечек (далее БРУ), контролирующим изоляцию сети относительно земли, и с дистанционным управлением по искробезопасным цепям. Допускается телемеханическое управление КРУ с пульта горного диспетчера (оператора). КРУ устанавливают в камерах на свежей струе воздуха.

Для включения РП участка и другого электрооборудования, расположенного в горных выработках с исходящей струей воздуха, применяют коммутационные аппараты с БРУ, обеспечивающие защитное отключение.

- 449. Для подачи напряжения на забойные машины в шахтах, опасных по газу или пыли, применяют пускатели (магнитные станции) с искробезопасными схемами управления.
- 450. Внешние цепи схем управления забойными машинами, оборудованием, ручным инструментом в шахтах, опасных по газу или пыли, должны обеспечивать искробезопасные параметры.

Для вновь создаваемых систем указанные цепи управления, проложенные в кабеле, питающем машину, оборудование, ручной инструмент, относят к искробезопасным при отключенном силовом напряжении с кабеля и электроприемников.

LI. СВЯЗЬ И СИГНАЛИЗАЦИЯ

451. Шахту оборудуют следующими видами связи и сигнализации:

системой телефонной связи;

системой общешахтного аварийного оповещения;

местными системами оперативной и предупредительной сигнализации на технологических участках;

регистратором служебных переговоров у горного диспетчера шахты.

Перечисленные виды связи и сигнализации конструктивно должны быть совмещены.

- 452. Все подземные линии искробезопасных систем связи должны быть двухпроводными и гальванически отделены от поверхностных линий связи и силовых сетей. Запрещается использование одного из проводов в качестве заземлителя.
- 453. Телефонные аппараты устанавливают в соответствии со схемой размещения телефонных аппаратов в горных выработках шахты, утвержденной техническим руководителем (главным инженером) шахты, предусматривающей их размещение на выемочных участках, пунктах откатки и транспортирования грузов, на пунктах посадки людей в транспортные средства, в электромашинных камерах, ЦПП, РП напряжением выше 6000 (10000) В, у стволов, в складах ВМ, в проводимых горных выработках и в местах, предусмотренных ПЛА.
 - 454. Система общешахтного аварийного оповещения в горных выработках обеспечивает:

оповещение об аварии людей, находящихся под землей;

прием на поверхности сообщения об аварии, передаваемого из шахты по системе телефонной связи;

ведение переговоров и передачу с автоматической записью на носитель информации указаний, связанных с ликвидацией аварии.

Передача оповещения об аварии по системе телефонной связи должна быть осуществима со всех телефонных аппаратов, подключенных к телефонной сети, набором единого номера экстренного оповещения об аварии.

Кроме аппаратуры общешахтного аварийного оповещения и связи для передачи сообщения об аварии необходимо использовать средства местной технологической связи.

455. Аппаратуру аварийной связи и оповещения устанавливают:

в шахте - у абонентов по указанию технического руководителя (главного инженера) шахты и в соответствии с ПЛА;

на поверхности - у диспетчера и у технического руководителя (главного инженера) шахты.

- 456. Лавы на пологих и наклонных пластах оборудуют громкоговорящей связью между пультом машиниста комбайна и переговорными постами, установленными в лаве и примыкающих к ней горных выработках.
- 457. Клети, предназначенные для подъема и спуска людей, оснащают средствами связи с машинным отделением при технических обслуживаниях и ремонте ствола.
- 458. Питание транспортных сигнальных устройств допускается от контактной сети напряжением не выше 275 В при условии, что сигнальные устройства рассчитаны на указанное напряжение. Их присоединение к контактному проводу производят кабелем (специальными присоединительными устройствами), а защиту осуществляют плавкими предохранителями.

459. Устройства связи с сетевым питанием снабжают резервным автономным источником, обеспечивающим работу не менее трех часов.

LII. ЗАЗЕМЛЕНИЕ

460. Заземлению подлежат металлические части электротехнических устройств, нормально не находящихся под напряжением, но которые могут оказаться под напряжением в случае повреждения изоляции, а также трубопроводы, сигнальные тросы, расположенные в горных выработках, где имеются электрические установки и проводки.

Устройство, осмотр и измерение сопротивления шахтных заземлений осуществляют в соответствии с Федеральными нормами и правилами в области промышленной безопасности "Инструкция по устройству, осмотру и измерению сопротивления шахтных заземлений", утвержденными приказом Ростехнадзора от 6 ноября 2012 г. N 625 (зарегистрирован Министерством юстиции Российской Федерации 11 февраля 2013 г., регистрационный N 26976; Бюллетень нормативных актов федеральных органов исполнительной власти, 2013, N 16).

В шахтах, опасных по газу или пыли, для защиты от статического электричества заземляют одиночные металлические воздухопроводы и пневматические вентиляторы.

Заземлению не подлежит металлическая крепь, пожарооросительный трубопровод, нетоковедущие рельсы, металлические устройства для подвески кабеля.

461. Общую сеть заземления создают путем непрерывного электрического соединения между собой всех металлических оболочек и заземляющих жил кабелей независимо от величины напряжения с присоединением их к главным и местным заземлителям.

К общей сети заземления присоединяют токоведущие рельсы, используемые в качестве обратного провода контактной сети электровозной откатки.

При наличии в шахте нескольких горизонтов к главным заземлителям присоединяют общую сеть заземления каждого горизонта. Для этого допускается использование брони силовых кабелей, проложенных между горизонтами. При отсутствии таких кабелей соединение общей сети горизонта с главным заземлителем выполняют с помощью отдельно проложенного проводника.

Для сетей стационарного освещения допускается устраивать местное заземление через каждые 100 м кабельной сети с заземлением последнего светильника в линии.

Для аппаратуры и кабельных муфт телефонной связи на участке сети с кабелями без брони допускается местное заземление без присоединения к общей сети заземления.

При откатке контактными электровозами заземление электроустановок постоянного тока, находящихся в непосредственной близости от рельсов, осуществляется путем присоединения заземляемой конструкции к рельсам, используемым в качестве обратного провода контактной сети.

462. Заземление корпусов передвижных машин, забойных конвейеров, аппаратов, установленных в лавах и забоях подготовительных горных выработок, и светильников, подсоединенных к сети гибкими кабелями, а также электрооборудования, установленного на платформах, перемещающихся по рельсам (за исключением передвижных подстанций), осуществляют посредством соединения их с общей сетью заземления с помощью заземляющих жил, питающих кабелей.

Заземляющую жилу с обеих сторон присоединяют к внутренним заземляющим зажимам в кабельных муфтах и вводных устройствах.

463. Максимальное общее переходное сопротивление сети заземления, измеренное у любых заземлителей, должно быть не более 2 Ом.

LIII. ОСВЕЩЕНИЕ СЕТЕВЫМИ СВЕТИЛЬНИКАМИ

- 464. На промплощадке шахты освещению подлежат все места работ, приемные площадки у ствола, лестницы, проходы для людей, помещения электромеханических установок, автотранспортные, железнодорожные и другие пути.
- 465. В зданиях подъемной машины, главной вентиляционной установки, компрессорной, машинных отделениях холодильных установок, надшахтных зданиях стволов, зданиях лебедок породных отвалов и канатных дорог, зданиях дегазационных установок, котельных, зданиях угольных бункеров, в административно-бытовых комбинатах предусматривают аварийное освешение от независимого источника питания.

Во всех перечисленных зданиях, кроме зданий подъемных машин, допускается применение для аварийного освещения индивидуальных светильников.

466. Светильники, питаемые от электрической сети, в подземных условиях освещаются:

электромашинные, лебедочные и диспетчерские камеры, центральные подземные подстанции, локомотивные гаражи, здравпункты, раздаточные камеры взрывчатых материалов, подземные ремонтные мастерские;

транспортные горные выработки в пределах околоствольного двора;

приемные площадки уклонов и бремсбергов, разминовки в околоствольных и участковых откаточных горных выработках, участки горных выработок, где производят перегрузку угля, пункты посадки людей в транспортные средства и подходы к ним;

призабойное пространство стволов, сопряжений и камер при проходке и проходческие подвесные полки;

лавы на пологих и наклонных пластах, оборудованные механизированными комплексами и струговыми установками (светильниками, входящими в состав комплекса или установки);

постоянно обслуживаемые электромашинные установки, передвижные подстанции и распределительные пункты вне пределов специальных камер;

горные выработки, оборудованные ленточными конвейерами и подвесными кресельными дорогами, предназначенными для перевозки людей;

людские ходки, оборудованные механизированной перевозкой людей.

Призабойное пространство подготовительных горных выработок, проводимых с применением проходческих комплексов или комбайнов, освещают встроенные в комплекс или комбайн светильники.

467. Для питания подземных осветительных установок применяют напряжение не выше 220 В.

Для ручных переносных светильников, питаемых от искробезопасных источников, допускается напряжение не выше 42 B.

LIV. ОСВЕЩЕНИЕ ГОЛОВНЫМИ СВЕТИЛЬНИКАМИ ИНДИВИДУАЛЬНОГО ПОЛЬЗОВАНИЯ

- 468. Персонал, работающий в горных выработках шахты, должен быть обеспечен головными светильниками на протяжении всего времени его пребывания в подземных условиях.
 - 469. Головные светильники перед их использованием пломбируют.

Запрещается несанкционированное вскрытие светильника в шахте.

470. Головные светильники не реже одного раза в месяц выборочно контролирует специалист шахты в порядке, утвержденном распорядительным документом руководителя шахты.

Главный энергетик шахты или лицо, им назначенное, проводит выборочную контрольную проверку светильников и зарядных станций.

471. Светильники, предназначенные для работников участка буровзрывных работ, выделяют в отдельную группу, и для этих светильников не допускается режим самообслуживания. Светильники обслуживают работники ламповой, обеспечивающие постоянный контроль их исправного состояния.

Во вновь создаваемых светильниках устройство для заряда аккумуляторных батарей выполняют таким образом, чтобы исключить возможность снятия опасного потенциала в условиях шахты при повреждении или загрязнении токопроводящей пылью зарядных контактов, расположенных на наружных поверхностях корпуса батареи или фары.

472. Головные светильники хранят и обслуживают в предназначенных для этих целей помешениях.

LV. ПОЖАРНАЯ БЕЗОПАСНОСТЬ И ПРОТИВОПОЖАРНАЯ ЗАЩИТА

- 473. Противопожарная защита шахты должна быть спроектирована и выполнена таким образом, чтобы предотвратить возможность пожара, а в случае его возникновения обеспечить эффективную локализацию и тушение пожара в его начальной стадии.
- 474. В проектах шахт, в документации по ведению горных работ и в эксплуатационной документации угледобывающей организации на технические устройства, применяемые на шахтах, необходимо предусматривать следующие меры по предотвращению пожаров, по нейтрализации воздействия на персонал опасных факторов пожара:

применение схем и способов проветривания, обеспечивающих предотвращение образования взрывопожароопасной среды, управление вентиляционными струями в аварийной обстановке и безопасность выхода людей из шахты или на свежую струю воздуха;

применение безопасных в пожарном отношении способов вскрытия и подготовки шахтных полей, систем разработки пластов угля, склонного к самовозгоранию, обеспечение своевременной надежной изоляции выемочных участков (лав) после их отработки и возможность быстрой локализации и активного тушения пожаров;

разработка мер по предупреждению пожаров от самовозгорания угля;

применение способов и средств снижения химической активности угля, снижения воздухопроницаемости выработанного пространства, повышения герметичности изолирующих сооружений и контроля признаков пожаров при отработке пластов угля, склонного к самовозгоранию;

применение безопасных в пожарном отношении технических устройств и схем энергоснабжения;

применение негорючих и трудногорючих веществ и материалов;

применение автоматических средств обнаружения начальных стадий подземных пожаров, установок пожаротушения и блокировок, не допускающих работу технических устройств при снижении параметров пожарного водоснабжения ниже проектного;

применение централизованного контроля и управления пожарным водоснабжением.

475. Применяемое противопожарное оборудование и его размещение в горных выработках шахты должно быть определено проектной документацией - проектом противопожарной защиты (далее - ППЗ). ППЗ разрабатывают в соответствии с планом развития горных работ на срок не более трех лет.

LVI. ПРЕДУПРЕЖДЕНИЕ ПОДЗЕМНЫХ ЭНДОГЕННЫХ ПОЖАРОВ

- 476. Порядок, способы и сроки реализации профилактических мер по предупреждению подземных эндогенных пожаров при разработке пластов угля, склонных к самовозгоранию, должны быть определены техническим проектом и (или) проектной документацией.
- 477. Угледобывающие организации не реже одного раза в три года определяют склонность отрабатываемых пластов к самовозгоранию.

Склонность впервые отрабатываемых пластов к самовозгоранию, планируемых к отработке в соответствии с техническими проектами до начала их отработки, определяют по результатам геологоразведочных работ.

Перечень пластов, склонных к самовозгоранию, ежегодно утверждает технический руководитель (главный инженер) шахты. Перечень пластов, склонных к самовозгоранию, после его утверждения направляют в $\Pi ACC(\Phi)$, обслуживающее шахту, и в территориальный орган Ростехнадзора.

478. Вскрытие и подготовку пластов угля, склонных к самовозгоранию, следует осуществлять горными выработками, пройденными по породам или по пластам угля, с применением мер, обеспечивающих безопасное ведение горных работ в части предупреждения возникновения самовозгорания угля.

Вскрывающие горные выработки в местах пересечения пластов угля, склонного к самовозгоранию, и на расстоянии 5 м в обе стороны от этого пересечения обрабатывают герметизирующим инертным материалом, исключающим проникновение воздуха к угольному массиву.

- 479. Отработку пластов угля, склонных к самовозгоранию, осуществляют с оставлением целиков угля, размеры которых обеспечивают безопасную отработку смежных выемочных участков. Места и размеры целиков угля должны быть определены техническим проектом и (или) проектной документацией.
- 480. При этажной схеме подготовки мощных пластов между откаточным штреком верхнего горизонта и вентиляционным штреком нижнего горизонта оставляют целики угля или возводят воздухонепроницаемые изолирующие полосы из негорючих твердеющих материалов.

Отработку крутых и крутонаклонных пластов угля, склонного к самовозгоранию, ведут отдельными выемочными блоками с оставлением между ними противопожарных целиков, прорезаемых только на уровне откаточного и вентиляционного горизонтов. Размер целика по простиранию равен мощности пласта, но не менее 6 м.

481. При отработке пластов угля, склонных к самовозгоранию, запрещается оставлять в выработанном пространстве целики и пачки угля, не предусмотренные проектом, отбитый и измельченный уголь.

При оставлении в выработанном пространстве целиков или пачек угля выполняют меры по предупреждению самовозгорания угля.

482. Отработанные участки изолируют в сроки, определенные техническим проектом и (или) проектной документацией.

Конструкцию изолирующих сооружений, периодичность проведения визуального осмотра и инструментально контроля герметичности изолирующих сооружений, замеров параметров рудничной атмосферы у (за) изолирующего сооружения определяет технический руководитель (главный инженер) шахты.

483. Технический руководитель (главный инженер) шахты организует выявление провалов земной поверхности, образовавшихся при ведении горных работ, периодический контроль их состояния и выполнение мер по их ликвидации.

LVII. ПРЕДУПРЕЖДЕНИЕ ЭКЗОГЕННЫХ ПОЖАРОВ

- 484. В горных выработках шахты должны быть организованы места хранения горючих веществ и материалов, используемых при эксплуатации технических устройств, работающих на дизельном топливе.
- 485. Ленточное полотно, вентиляционные трубы, детали технических устройств, оболочки электрических кабелей и другие неметаллические изделия, применяемые в горных выработках и надшахтных зданиях, должны быть изготовлены из негорючих или трудногорючих материалов.

Для изготовления установочных брусьев и подкладок под ленточные и скребковые конвейеры (кроме приводных секций) допускается применение древесных материалов, пропитанных огнезащитным составом.

- 486. В горных выработках, оборудованных ленточными конвейерами, должны быть установлены входящие в состав системы МФСБ технические средства обнаружения ранних признаков эндогенных и экзогенных пожаров.
- 487. Система контроля и управления пожарным водоснабжением должна быть сблокирована с системами управления техническими устройствами и обеспечивать передачу данных в МФСБ.
- 488. В горных выработках шахты устанавливают автоматические установки пожаротушения, информация о срабатывании которых передается в МФСБ.
- 489. В действующих горных выработках должен быть проложен пожарооросительный трубопровод. Подземный пожарооросительный трубопровод должен обеспечивать подачу воды на тушение пожара и устройство водяных завес на пути его распространения в любой точке горных выработок шахты в соответствии с ППЗ.

Диаметр пожарооросительного трубопровода принимают в соответствии с ППЗ. Минимальный диаметр пожарооросительного трубопровода 100 мм.

Запрещается использовать пожарооросительный трубопровод не по целевому назначению.

490. На пожарооросительном трубопроводе в соответствии с ППЗ устанавливают стационарные средства контроля, информация с которых передается в МФСБ.

LVIII. ТУШЕНИЕ ПОДЗЕМНЫХ ПОЖАРОВ

491. Локализацию и тушение подземного пожара после его обнаружения проводят в соответствии с ПЛА и оперативными планами тушения подземного пожара. Решение о разработке опера-

тивных планов тушения подземного пожара принимает ответственный руководитель работ по ликвидации аварии.

- 492. Для локализации и тушения подземного пожара, который не удалось потушить в результате выполнения мер, предусмотренных ПЛА и оперативными планами тушения подземного пожара, в горных выработках шахты следует возводить взрывоустойчивые изолирующие сооружения. Решение о возведении взрывоустойчивых изолирующих сооружений принимает ответственный руководитель работ по ликвидации аварии. После возведения взрывоустойчивых изолирующих сооружений тушение подземного пожара осуществляют в соответствии с разработанной для этих целей проектной документацией, которая должна предусматривать меры по тушению подземного пожара, контроль состояния рудничной атмосферы в действующих горных выработках и в изолированных горных выработках пожарного участка, границы пожарного участка и меры по уменьшению протяженности изолированных горных выработок.
 - 493. Подземные пожары подлежат расследованию и учету.

Для подземных пожаров должны быть определены граница пожарного участка и зона влияния опасных факторов пожара.

LIX. ВСКРЫТИЕ УЧАСТКОВ С ПОТУШЕННЫМИ ПОЖАРАМИ

494. Потушенные подземные пожары подлежат учету как потушенные.

Перевод пожара из действующего в потушенный осуществляет комиссия, созданная распорядительным документом руководителя угледобывающей организации. Перевод оформляют документально, и его утверждает технический руководитель (главный инженер) шахты.

495. Порядок обследования горных выработок в границах пожарного участка, подземный пожар в котором потушен, утверждает технический руководитель (главный инженер) шахты.

При обследовании горных выработок и ведении работ по их восстановлению после пожара необходимо соблюдать требования промышленной безопасности.

Вскрытие горных выработок изолированного участка с потушенным подземным пожаром, их обследование и разгазирование проводят работники $\Pi ACC(\Phi)$.

496. После разгазирования вскрытых горных выработок технический руководитель (главный инженер) шахты в течение не менее чем трех суток организует проверку состава, расхода, температуры и влажности рудничного воздуха специалистами шахты и работниками ПАСС(Ф).

При выявлении в течение трех суток признаков пожара пожарный участок изолируют.

LX. ВЕДЕНИЕ РАБОТ В РАЙОНАХ ПОЖАРНЫХ УЧАСТКОВ

- 497. Ведение горных работ в границах действующего пожара запрещается.
- 498. Горные работы в границах потушенного пожара проводят в соответствии с проектной документацией, утвержденной техническим руководителем (главным инженером) шахты, содержащей требования по обеспечению промышленной безопасности.

LXI. ВОДООТЛИВ

499. В горных выработках шахты в соответствии с техническим проектом и (или) проектной документацией устраивают главные водоотливные установки, участковые водоотливные установки, насосные станции и передвижные насосные установки (далее - водоотливные установки).

Водоотливные установки должны обеспечивать откачку воды из горных выработок шахты в местах их установки в объеме не менее максимального притока воды в них.

- 500. В действующих горных выработках с минимальными высотными отметками в пределах отрабатываемого шахтного поля устраивают главные водоотливные установки.
- 501. Главные и участковые водоотливные установки должны иметь не менее двух не соединенных между собой водосборников.

Водосборники главного водоотлива должны заполняться при максимальном притоке воды в них не менее чем за 4 часа, водосборники участковых водоотливов - не менее чем за 2 часа.

В шахтах, в горные выработки которых возможно поступление больших объемов воды в течение небольшого интервала времени (далее - прорывы воды), необходимо предусматривать меры по предупреждению затопления горных выработок при прорывах воды.

При притоках воды в горную выработку менее 50 м3/ч участковая водоотливная установка может иметь один водосборник.

Устройство участковых водоотливных установок без специальных камер допускается при притоках менее $50 \text{ m}^{3/4}$.

502. Главные и участковые водоотливные установки оборудуют рабочими и резервными насосами.

Подача каждого насоса или группы одновременно работающих насосов, не считая резервных, должна обеспечивать откачку максимального суточного притока воды не более чем за 20 часов.

При проведении горных выработок резервные насосы не подключают к трубопроводу и размещают около работающего насоса. При проведении стволов резервные насосы размещают у устья ствола.

- 503. Главные водоотливные установки подключают не менее чем к двум трубопроводам. Каждый трубопровод должен обеспечить откачку максимального суточного притока воды из водосборника не более чем за 20 часов.
- 504. На трубопроводах в главных водоотливных установках устанавливают запорную арматуру, обеспечивающую откачку воды при проведении ремонтных работ насосов.
- 505. В вертикальных стволах запрещается прокладка на участках, находящихся против дверей клети, трубопроводов, используемых для откачки воды, с давлением свыше 6,4 МПа.
- 506. Водоотливные трубопроводы главных водоотливных установок после их монтажа и при эксплуатации один раз в пять лет испытывают на их герметичность при давлении, в 1,25 раза превышающем давление, создаваемое насосами при откачке воды.
- 507. Руководитель шахты распорядительным документом устанавливает порядок осмотра и проверки работоспособности водоотливных установок.

Не реже одного раза в год проводят инструментальную проверку работоспособности водоотливной установки.

LXII. ВЕДЕНИЕ ГОРНЫХ РАБОТ НА УЧАСТКАХ НЕДР, ГДЕ МОГУТ ПРОИЗОЙТИ ПРОРЫВЫ ВОДЫ

- 508. Порядок ведения горных работ на участках недр, где могут произойти прорывы воды в действующие горные выработки (далее на участках, опасных по прорывам воды), должен быть определен техническим проектом и (или) документацией по ведению горных работ на участках, опасных по прорывам воды, утвержденной техническим руководителем (главным инженером) шахты.
- 509. В техническом проекте и (или) документации по ведению горных работ на участках, опасных по прорывам воды, должны быть определены границы участков, опасных по прорыву воды (далее опасные зоны).
- 510. Горные работы в опасных зонах проводят с соблюдением мер по предотвращению прорыва воды в действующие горные выработки.
- 511. При появлении в горных выработках, проводимых в границах опасных зон, признаков возможного прорыва воды персонал выходит из этих горных выработок и сообщает об этом горному диспетчеру.
- 512. О затоплении горных выработок шахты технический руководитель (главный инженер) шахты в письменной форме сообщает техническим руководителям (главным инженерам) смежных шахт.
- 513. Горные работы по добыче угля под руслами рек (в том числе и под пересыхающими руслами рек), водоемами, водоносными горизонтами и обводненными зонами ведут в соответствии с проектной документацией.

LXIII. ВЕДЕНИЕ ГОРНЫХ РАБОТ НА УЧАСТКАХ НЕДР, ОПАСНЫХ ПО ПРОРЫВУ ГЛИНЫ И ПУЛЬПЫ

514. К участкам недр, опасным по прорыву глины и пульпы, относят:

при разработке первого горизонта системами с обрушением кровли покрытые глинистыми наносами участки угольных пластов, расположенные под логами, затопляемыми поймами рек, водопроводящими речными отложениями, заболоченными котловинами, под выработанными пространствами (в том числе карьерами), заполненными глинистыми породами, влажность которых превышает их пределы пластичности более чем на 3%;

при разработке системами с обрушением кровли второго и нижележащих горизонтов угольных пластов с углами падения более 55° при выемке на полную мощность или с разделением на пачки (слои) участки пластов, на которых первоначальная мощность пылевато-глинистых наносов на выходах пластов составляет 10 м и более, и (или) участки пластов под провалами, образовавшимися в результате отработки верхних горизонтов и засыпанных глинистым грунтом при мощности наносов от 5 до 10 м, и (или) участки, расположенные под выработанным пространством вышележащих горизонтов, в которое при проведении работ по его заиливанию был подан объем заиловочной глины, превышающий 10% объема добытого угля.

515. До начала ведения горных работ на выемочном участке, отнесенном к опасным по прорыву глины и пульпы или расположенном под заиленными участками в вышележащем пласте, при мощности междупластия по нормали менее пяти мощностей отрабатываемого пласта технический руководитель (главный инженер) шахты организует контроль состояния изолирующих сооружений в горных выработках выемочного участка, состояния земной поверхности над выемочным участком, количества воды в провалах, образующихся при ведении горных работ, и количества воды, поступающей в действующие горные выработки.

Разведку осуществляют бурением скважин диаметром 75 - 100 мм из горных выработок вентиляционного горизонта разрабатываемого участка или с соседних пластов. Результаты разведки оформляют актом.

Разведка, вскрытие и отработка участков, отнесенных к опасным по прорыву глины и пульпы или расположенных под заиленными участками в вышележащем пласте, должна быть проведена по документации, утвержденной техническим руководителем (главным инженером) шахты, и содержащей меры безопасности ведения этих работ.

При наличии в горных выработках подрабатываемого участка воды или жидкой глины принимают меры по обезвоживанию глины и выпуску воды до начала очистных работ.

Приложение N 1 к Федеральным нормам и правилам в области промышленной безопасности "Правила безопасности в угольных шахтах", утвержденным приказом Федеральной службы по экологическому, технологическому и атомному надзору от 19 ноября 2013 г. N 550

ТЕРМИНЫ И ИХ ОПРЕДЕЛЕНИЯ

Утратили силу. - Приказ Ростехнадзора от 08.08.2017 N 303.

Приложение N 2 к Федеральным нормам и правилам в области промышленной безопасности "Правила безопасности в угольных шахтах", утвержденным приказом Федеральной службы по экологическому, технологическому и атомному надзору от 19 ноября 2013 г. N 550

МИНИМАЛЬНЫЕ ПЛОЩАДИ ПОПЕРЕЧНЫХ СЕЧЕНИЙ ГОРИЗОНТАЛЬНЫХ И НАКЛОННЫХ ГОРНЫХ ВЫРАБОТОК В СВЕТУ

Горные выработки	Минимальные	Минимальная
	площади попе-	высота от почвы
	речных сечений,	(головки рель-
	M^2	сов) до крепи
		или оборудова-
		ния, м
1. Главные откаточные и вентиляционные горные выработ-	9,0	1,9
ки, людские ходки для механизированной перевозки		
2. Участковые вентиляционные, промежуточные, конвейер-	6,0	1,8
ные и аккумулирующие штреки, участковые бремсберги и		
уклоны		
3. Вентиляционные просеки, печи, косовичники и другие	1,5	-
горные выработки		
4. Участковые горные выработки, находящиеся в зоне влия-	4,5	1,8
ния очистных работ, людские ходки, не предназначенные		
для механизированной перевозки людей		
5. Главные откаточные и вентиляционные горные выработ-		
ки, введенные в действие до 1987 года:		
закрепленные деревянной, сборной железобетонной, ме-	4,5	1,9
таллической крепью		
закрепленные каменной, монолитной, железобетонной,	4,0	1,9
бетонной, гладкостенной сборной железобетонной крепью		
участковые вентиляционные, промежуточные и конвей-	3,7	1,8
ерные штреки, людские ходки, участковые бремсберги и		
уклоны		
6. Горные выработки, в которых имеется контактный про-		
вод:		
участки околоствольных дворов, по которым передвига-	-	2,4
ются люди до места посадки в вагонетки;		
горные выработки, по которым передвигаются люди, око-	-	2,2
лоствольные дворы, площадки посадочные и погрузочно-		
разгрузочные, сопряжения с другими горными выработками;		
горные выработки, по которым производится перевозка	-	2,0
людей, или при наличии выработок (отделений) для пере-		
движения людей		

ШИРИНА ПРОХОДОВ ДЛЯ ЛЮДЕЙ И ВЕЛИЧИНА ЗАЗОРОВ МЕЖДУ КРЕПЬЮ, ОБОРУДОВАНИЕМ, ТРУБОПРОВОДАМИ И ПОДВИЖНЫМ СОСТАВОМ

Выработки	Вид транспорта	Расположение	Минима величи		Примечание
			прохода	зазора	
1	2	3	4	5	6
1. Горизонтальные, наклонные		Между крепью и подвижным составом	0,7	0,25	При деревянной, металлической и рамных конструкциях железобетонной и бетонной крепи
			0,7	0,2	При сплошной бетонной, ка-менной и желе-зобетонной крепи
			1,0	-	В местах по- садки людей в пассажирские вагоны
		Между подвижными составами на параллельных путях	-	0,2	При двухсторонней посадке проход шириной 1,0 м делается с двух сторон
2. Горизонтальные, наклонные	Конвейерный	Между крепью и конвейером	0,7	0,4	
		От верхней вы- ступающей ча- сти конвейера до верхняка	-	0,5	
		От натяжных и приводных го- ловок для верх- няка	-	0,6	
3. Горизонтальные, наклонные	Монорельсовый	Между крепью и подвижным составом	0,7	0,2	При скорости движения до 1 м/с
			0,85	0,3	При скорости движения более 1 м/с
		Между днищем сосуда или нижней кром-кой перевозимого груза и почвой горной выработки	-	0,4	
4. Наклонные	Канатно- кресельные дороги	Между крепью и осью каната	0,7	0,6	На высоте за- жима подвески

1	2	3	4	5	6
5. Горизонтальные	Конвейерный с	Между крепью	0,7	-	
	рельсовым	и подвижным			
		составом			
		Между крепью	-	0,4	
		и конвейером			
		Между подвиж-	-	0,4	
		ным составом и			
		конвейером			
6. Наклонные	Конвейерный с	Между крепью	0,7	-	При проведе-
	рельсовым	и конвейером			нии указанных
		Между крепью	-	0,25	горных вырабо-
		и подвижным			ток проход до-
		составом			пускается иметь
		Между подвиж-	-	0,4	со стороны по-
		ным составом и			движного со-
		конвейером			става
7. Горизонтальные,	Конвейеры с моно-	Между крепью	0,7	-	
наклонные	рельсовыми или	и подвижным	•		
	надпочвенными до-	составом			
	рогами	Между крепью	-	0,4	
		и конвейером			
		Между подвиж-	-	0,4	
		ным составом и			
		конвейером			
8. Горизонтальные,	Монорельсовая до-	Между подвиж-	-	0,5	
наклонные	рога, расположен-	ным составом и			
	ная над конвейером	конвейером			
9. Наклонные	Канатно-рельсовые	Между канатом	-	1,0	
	дороги	и конвейером			
10. Горные выра-	Устройство для пе-	Между крепью	0,8	-	
ботки, служащие	репуска угля	и отшивом или			
для перепускания		металлическими			
угля, породы или		трубами			
закладочных мате-					
риалов на откаточ-					
ный горизонт само-					
теком, имеющие два					
отделения или обо-					
рудованные метал-					
лическими трубами					

Примечания: 1. На двухпутевых участках горных выработок всех околоствольных дворов, в однопутевых околоствольных горных выработках клетевых стволов, а также во всех других местах двухпутевых горных выработок, где производят маневровые работы, сцепку и расцепку вагонеток или составов (на разминовках), перегрузка оборудования и материалов с одного транспортного средства на другое, у стационарных погрузочных пунктов производительностью 1000 т в сутки и более, у транзитных погрузочных пунктов при отсутствии обходной горной выработки независимо от производительности проходы для людей обеспечиваются по 0,7 м с обеих сторон.

2. Ширина проходов для людей и зазоры выдерживают по высоте горной выработки не менее 1,8 м от почвы (тротуара). Проходы на всем протяжении горной выработки устраивают с одной стороны. В двухпутевых горных выработках запрещается устройство проходов между путями.

Приложение N 3 к Федеральным нормам и правилам в области промышленной безопасности "Правила безопасности в угольных

шахтах", утвержденным приказом Федеральной службы по экологическому, технологическому и атомному надзору от 19 ноября 2013 г. N 550

РАСЧЕТ ПРЕДОХРАНИТЕЛЬНЫХ УСТРОЙСТВ ШАХТНЫХ ПОДЪЕМОВ

Вид подъема	Расчетная масса падающего груза
1. Клетьевой, снабженный парашютами и тормозными канатами, или при многоканатной подвеске клетей с числом головных канатов четыре и более	Суммарная масса груза, увеличенная в 1,5 раза
2. Скиповой с многоканатной машиной и числом головных канатов четыре и более	Половина массы груза скипа
3. Остальные виды подъемов	Масса груженого подъемного сосуда

Приложение N 4 к Федеральным нормам и правилам в области промышленной безопасности "Правила безопасности в угольных шахтах", утвержденным приказом Федеральной службы по экологическому, технологическому и атомному надзору от 19 ноября 2013 г. N 550

ДОПУСТИМАЯ КОНЦЕНТРАЦИЯ МЕТАНА В АТМОСФЕРЕ ДЕЙСТВУЮЩИХ ГОРНЫХ ВЫРАБОТОК И ТРУБОПРОВОДАХ

Вентиляционная струя, трубопровод	Допустимая концентрация метана, % (по объему)
В лавах и тупиковых горных выработках, камерах, в горных выработках выемочного участка, поддерживаемых горных выработках и исходящих из них	1
Исходящая крыла, шахты	0,75
Поступающая на выемочный участок, в лавы, к забоям тупиковых горных выработок и в камеры	0,5
Местные скопления метана в горных выработках	2
На выходе из смесительных камер	2
Трубопроводы для изолированного отвода метана, газодренажные горные выработки	3,5
Дегазационные трубопроводы	До 3,5 и более 25
Изолированные горные выработки, выработанные пространства	Не регламентируется

Приложение N 5 к Федеральным нормам и правилам в области промышленной безопасности "Правила безопасности в угольных шахтах", утвержденным приказом Федеральной службы по экологическому, технологическому и атомному надзору от 19 ноября 2013 г. N 550

МАКСИМАЛЬНО ДОПУСТИМЫЕ КОНЦЕНТРАЦИИ ВРЕДНЫХ ГАЗОВ В РУДНИЧНОМ ВОЗДУХЕ ДЕЙСТВУЮЩИХ ГОРНЫХ ВЫРАБОТОК

Вредные газы	Максимально допустимая концентрация газа и действующих горных выработках			
	% (по объему) мг/м3			
Оксид углерода (СО)	0,00170	20		
Оксиды азота (в перерасчете на NO2)	0,00025	5		
Диоксид азота (NO2)	0,00010	2		
Сернистый ангидрид (SO2)	0,00038	10		
Сероводород (H2S)	0,00070	10		

Приложение N 6 к Федеральным нормам и правилам в области промышленной безопасности "Правила безопасности в угольных шахтах", утвержденным приказом Федеральной службы по экологическому, технологическому и атомному надзору от 19 ноября 2013 г. N 550

МАКСИМАЛЬНО ДОПУСТИМЫЕ СКОРОСТИ ВОЗДУХА В ГОРНЫХ ВЫРАБОТКАХ

Горные выработки, вентиляционные устройства	Максимальная скорость воздуха, м/с
Вентиляционные скважины	Не ограничена
Стволы и вентиляционные скважины с подъемными установками, предназначенными только для подъема людей в аварийных случаях, вентиляционные каналы	15
Стволы, предназначенные только для спуска и подъема грузов	12
Кроссинги трубчатые и типа перекидных мостов	10
Стволы для спуска и подъема людей и грузов, квершлаги, главные откаточные и вентиляционные штреки, капитальные и панельные бремсберги и уклоны	8
Все прочие горные выработки, проведенные по углю и породе	6
В лавах и тупиковых горных выработках	4

Приложение N 7 к Федеральным нормам и правилам в области промышленной безопасности "Правила безопасности в угольных шахтах", утвержденным приказом Федеральной службы по экологическому, технологическому и атомному надзору от 19 ноября 2013 г. N 550

КАТЕГОРИИ ШАХТ ПО ГАЗУ (МЕТАНУ И (ИЛИ) ДИОКСИДУ УГЛЕРОДА)

Категория шахт по газу (метану и (или) диоксиду углерода)	Относительная газообильность, м3/т
Негазовые	Метан и (или) диоксид углерода не выявлены
Газовые	
I	До 5
II	От 5 до 10
III	От 10 до 15
Сверхкатегорные	15 и более, суфлярные выделения
Опасные по внезапным выбросам угля (породы) и газа	Пласты, опасные по внезапным выбросам угля (породы) и газа

Приложение N 8 к Федеральным нормам и правилам в области промышленной безопасности "Правила безопасности в угольных шахтах", утвержденным приказом Федеральной службы по экологическому, технологическому и атомному надзору от 19 ноября 2013 г. N 550

ВЕЛИЧИНА ЗАЗОРОВ НА УЧАСТКАХ, НА КОТОРЫХ ГОРНАЯ ВЫРАБОТКА МЕНЯЕТ СВОЕ НАПРАВЛЕНИЕ, И НА ПРИМЫКАЮЩИХ К НИМ ПРЯМЫХ УЧАСТКАХ ГОРНЫХ ВЫРАБОТОК

Место расположения зазора	Величина зазора, м			
	V ≤ 1 m/c	V > 1 m/c		
Со стороны прохода для людей	0,7 + H	0,85 + H		
С неходовой стороны	0,2 + H	0,3 + H		

Примечание. V - скорость движения на участках, на которых горная выработка меняет свое направление, и примыкающих к ним прямых участках горных выработок, m/c; H - величина уширения выработки, m.

ДЛИНА ПРЯМЫХ УЧАСТКОВ ГОРНЫХ ВЫРАБОТОК, ПРИМЫКАЮЩИХ К УЧАСТКАМ, НА КОТОРЫХ ГОРНАЯ ВЫРАБОТКА МЕНЯЕТ СВОЕ НАПРАВЛЕНИЕ

Радиус закругления, м	6	6	8	10 - 14	16 - 20	20 - 25
Длина примыкающих участ- ков, м	30	25	20	15	10	5

Приложение N 9 к Федеральным нормам и правилам в области промышленной безопасности "Правила безопасности в угольных шахтах", утвержденным приказом Федеральной службы по экологическому, технологическому и атомному надзору от 19 ноября 2013 г. N 550

МАКСИМАЛЬНАЯ СКОРОСТЬ ПОДЪЕМА И СПУСКА ЛЮДЕЙ И ГРУЗОВ ПО ВЕРТИКАЛЬНЫМ И НАКЛОННЫМ ГОРНЫМ ВЫРАБОТКАМ

Наименование горных выработок	Максимальная скорость подъс и спуска, м/с	
	людей	грузов
Вертикальные горные выработки, оборудованные:		Определяются
клетями	12	проектом
скипами	-	
Наклонные горные выработки, оборудованные:		
скипами	-	7
вагонетками	5	5
Вертикальные горные выработки в проходке, оборудованные:		
бадьями (по направляющим)	8	12
бадьями (без направляющих)	2	2
подвесным проходческим оборудованием	-	0,2
спасательными лестницами	0,35	-
Спуск негабаритов по вертикальным и наклонным горным выработкам	-	1/3 номинальной скорости для данного подъема

ВЕЛИЧИНА СРЕДНЕГО ЗАМЕДЛЕНИЯ ПОДЪЕМНОЙ УСТАНОВКИ ПРИ ПОДЪЕМЕ РАСЧЕТНОГО ГРУЗА

Угол наклона горной выработки, град.	5	10	15	20	25	30	40	50 и более
Величина замедления, м/с2	0,8	1,2	1,8	2,5	3,0	3,5	4,0	5,0

Приложение N 10 к Федеральным нормам и правилам в области промышленной безопасности "Правила безопасности в угольных шахтах", утвержденным приказом Федеральной службы по экологическому, технологическому и атомному надзору от 19 ноября 2013 г. N 550

ЗАЗОРЫ МЕЖДУ МАКСИМАЛЬНО ВЫСТУПАЮЩИМИ ЧАСТЯМИ ПОДЪЕМНЫХ СОСУДОВ СТАЦИОНАРНЫХ ПОДЪЕМНЫХ УСТАНОВОК, КРЕПЬЮ И РАССТРЕЛАМИ В ВЕРТИКАЛЬНЫХ СТВОЛАХ

Вид крепи ствола	Вид и расположение армирования	-						
1	2	3	4	5				
1. Деревянная	Деревянная и металлическая с одно- и двухсторонним расположением проводников	Между подъемными сосудами и крепью	200	Для шахт, находящихся в эксплуатации, в случае особо стесненного расположения подъемных сосудов в стволе с деревянной армировкой допускается зазор не менее 150 мм при лобовом расположении проводников, а также при двухстороннем, если наиболее выступающая часть сосуда отстоит от оси проводников не более чем на 1 м				
2. Бетонная, кир- пичная, тюбинго- вая, бетонитовая	Металлическая с одно- и двухсто- ронним распо- ложением про- водников	То же	150					
3. Бетонная, кир- пичная, тюбинго- вая, бетонитовая	Деревянная с одно- и двухсторонним расположением проводников		200					
4. Деревянная, бетонная, кирпичная, тюбинговая	Металлические и деревянные рас- стрелы, не несущие проводники	Между подъемными сосудами и расстрелами	150	При особо стесненном расположении подъемных сосудов в стволе этот зазор может быть уменьшен до 100 мм				

1	2	3	4	5
5. Деревянная, бетонная, кирпичная, тюбинговая	Между подъемными сосудами расстрел отсутствует	Между двумя движущимися сосудами	200	При жестких проводниках
6. Деревянная, бетонная, кирпичная, тюбинговая, бетонитовая	Одностороннее, двухстороннее боковое и лобо- вое расположе- ние проводников	Между клетью и элементами по- садочных устройств	60	В эксплуатационных стволах зазор может быть не менее 40 мм
7. Деревянная, бетонная, кирпичная, тюбинговая, бетонитовая	Одностороннее, двухстороннее боковое и лобо- вое расположе- ние проводников	Между расстрелами и выступающими частями подъемных сосудов, удаленных от оси проводников на расстояние до 750 мм	40	При наличии на подъемном сосуде выступающих разгрузочных роликов зазор между роликом и расстрелом увеличивается на 25 мм
8. Деревянная, бетонная, кирпичная, тюбинговая, бетонитовая	Деревянная с лобовым расположением проводников	Между расстрелом, несущим проводником и клетью	50	
9. Деревянная, бетонная, кирпичная, тюбинговая, бетонитовая	Металлическая и деревянная независимо от расположения проводников	Между наружной кромкой башмака подъемного сосуда и зажимным устройством для крепления проводников к расстрелам	15	
10. Деревянная, бетонная, кирпичная, тюбинговая, бетонитовая	Одностороннее, двухстороннее и лобовое распо- ложение провод- ников	Между наиболее выступающими и удаленными от центра частями сосуда и расстрелом с учетом износа проводников и лап и возможного поворота сосуда	25	Для проектируемых шахт
11. Деревянная, бетонная, кирпичная, тюбинговая	Металлическая и деревянная независимо от расположения проводников	Между рельсами приемных пло- щадок и клетей	30	

1	2	3	4	5
12. Все виды кре-	Канатные про-	Между подъем-	225	При глубине ствола
пи	водники много-	ным сосудом и		до 800 м
	канатного подъ-	крепью		
	ема	Между расстре-	265	При глубине ствола
		лом или отшив-		более 800 м
		кой в стволе		
		Между движу-	300	Эксплуатационные
		щимися сосуда-		зазоры во всех случа-
		ми одного подъ-		ях не менее 0,73 про-
		ема		ектных
		Между движу-	350	
		щимися сосуда-		
		ми смежных		
		подъемов		
13. Все виды кре-	Канатные про-	Между движу-	300	
ПИ	водники однока-	щимися сосуда-		
	натного подъема	ми одного подъ-		
		ема		
		Между движу-	350	
		щимися сосуда-		
		ми смежных		
		подъемов	2.40	
		Между подъем-	240	
		ным сосудом и		
		крепью, расстре-		
		лом или отшив-		
		кой в стволе		

Приложение N 11 к Федеральным нормам и правилам в области промышленной безопасности "Правила безопасности в угольных шахтах", утвержденным приказом Федеральной службы по экологическому, технологическому и атомному надзору от 19 ноября 2013 г. N 550

КНИГА ОСМОТРА ПОДЪЕМНОЙ УСТАНОВКИ

Подъем		
Шахта		
Организация		
	Начата ""	20_ г.
	Окончена ""	20 г.
	Раздел	I

N п/п	Объект осмотра		Месяц, год числа месяца																													
		1	2	3	4	5	6	7	8	9	10	11	12	13				l		19	20	21	22	23	24	25	26	27	28	29	30 3	1
1	2			ı	ı	ı	ı			ı	1		ı			ı	3									I		<u> </u>				
1	Подъемная машина:																															
	барабан (приводной шкив)																															
	тормоз (комплекс)																															
	привод машины																															
	индикатор (указатель глубины)																															
2	Электрооборудование:																															
	предохранительные и защитные устройства (ограничитель скорости, концевые выключатели, скоростемер)																															
	двигатель подъемной машины и преобразовательная группа при системе Г-Д или ТП-Л																															
	распределительное устройство и реверсоры																															
	командоаппарат и роторная магнитная станция																															
	пульт управления																															

					1		I	1							$\overline{}$
	аппаратура автоматизации, сигнализации и измеритель- ные приборы														
3	Шкивы:														
	футеровка														
	подшипники														
	спицы и обод														
	состояние смазки														
4	Подъемный сосуд:														
	подвесное устройство														
	стопорные и ограждающие устройства (двери)														
	парашюты														
	направляющие устройства														
5	Кулаки														
6	Качающиеся площадки														
7	Проводники														
8	Загрузочные устройства														
9	Разгрузочные устройства														
10	Стопоры														
11	Амортизирующие устройства многоканатных подъемных														

	установок															
	Горная выработка и путевое хозяйство															
	Поддерживающие и отжимные ролики															
14	Подвески															
15	Натяжное устройство:															
	натяжной шкив															
	каретка															

Подпись лица, производившего осмотр

Место для замечаний главного механика шахты (начальника участка шахтного транспорта)

Раздел II

Дата	Описание неисправности механизма или устройства	Мероприятия по устранению дефекта или неполадки, срок выполнения и фамилия исполнителя	Отметка о выполнении, подпись исполнителя и главного механика
1	2	3	4

(продолжение к приложению N 11)

КНИГА ПРИЕМКИ И СДАЧИ СМЕН

Подъем		_
Шахта		
Организация		
	Начата ""	20 г.
	Окончена " "	20 г

Да-	Часы	Фамилия ма-	Пожар-	Чистота						Состоян	ие элементов
та	сда- чи	шиниста, при- нимающего	ные сред- ства	помеще- ний	Торм	озные устройства	Компрессор-	Ограничи-	Блокировоч-	Концевые	Указатель
	смен	смену			рабо- чие	предохранитель- ные	ная установка	тель скоро- сти, защита от напуска каната	ные устройства	выключате- ли	глубины и скоросте- мер
1	2	3	4	5	6	7	8	9	10	11	12

(продолжение)

подъемной машин	Ы							
Аппаратура сиг-	Состояние двигате-	Барабаны	Подшипники	Наличие с	мазки	Аппаратура ав-	Подпись в	Замечания
нализации и из- мерительные приборы	лей и пусковой электроаппаратуры	и футеров- ка		в подшипниках	в картере зубчатой передачи	томатизации	приеме	
13	14	15	16	17	18	19	20	21

Примечание. В книгу записывают состояние подъемной установки при ежесменных осмотрах, проводимых машинистами при приемке и сдаче смен.

В графу 4 вносят запись о наличии и состоянии всех пожарных средств.

Машинист делает запись: "Полностью" или "Некомплектно".

В графе 5 делают отметку о чистоте помещения. Машинист делает запись: "Чисто" или "Грязно".

В графах 6 - 19 записывают состояние элементов подъемной машины. Машинист делает запись: "Исправно" или "Неисправно".

Элементы автоматизации в автоматизированных подъемах осматривают в соответствии с инструкцией (электрослесарь).

В графе 21 машинисты могут делать записи о состоянии элементов подъемной машины, не вошедшие в перечень граф 6 - 19.

В этой же графе ставится подпись надзора, механика подъема, главного механика шахты или производственного объединения в день проверки подъемной машины.

КНИГА ОСМОТРА КАНАТОВ И ИХ РАСХОДА

Подъем			
Шахта			
Организация			
	Начата ""	20_	_ Γ.
	Окончена " "	20	Γ.

Раздел I. Запись результатов осмотра канатов

(левая страница книги)

					Левый (гол	повной, тяго	вый) канат				
Да-та	Общее число из- ломанных проволок	Число из- ломанных проволок на шаге свивки каната	Расстояние наиболее поврежденного участка каната от его конца, м	Удлинение каната, м	Диаметр ка номиналь- ный	аната, мм наимень- ший	Расстояние участка с наимень-шим диа-метром каната от его конца у прицепного устройства, м	Результаты замера распределения нагрузки между головными канатами много кратных подъемных машин	Подпись лица, производившего осмотр	Подпись главно- го механика шахты или старше- го механика	Примеча- ние
1	2	3	4	5	6	7	8	9	10	11	12

(правая страница книги)

					Правый (хво	стовой, нат	ажной) канат				
Да-та	Общее число из- ломанных проволок	Число из- ломанных проволок на шаге свивки каната	Расстояние наиболее поврежденного участка каната от его конца, м	Удлинение каната, м	Диаметр ка номиналь- ный	аната, мм наимень- ший	Расстояние участка с наимень-шим диа-метром каната от его конца у прицепного устройства, м	Результаты замера распределения нагрузки между головными канатами много кратных подъемных машин	Подпись лица, производившего осмотр	Подпись главно- го механика шахты или старше- го механика	Примеча- ние
1	2	3	4	5	6	7	8	9	10	11	12

Раздел II. Запись расхода канатов

N п/ п	Дата изго- товления и получения каната	Завод- изготови- тель каната	Завод- ской но- мер кана- та	ГОС Т или ТУ	Конструк- ция и свивка каната	Диаметр каната по завод- ским дан-	Дата навес- ки ка- ната	Номер свидетельства и дата испытаний каната	Куда наве- шен канат (правый или левый)	Номер свидетельства и дата повторных испытаний каната	Дата сня- тия каната	Причи- ны сня- тия ка- ната	Время хранения каната до его навески, дней	Срок служ- бы ка- ната	Подпись механи- ка шах- ты
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	_	_													

Примечание. На каждую подъемно-транспортную установку ведут отдельную книгу. В эту книгу записывают результаты ежесуточного, еженедельного и ежесменного осмотра канатов. Запись результата осмотра канатов производят в разделе I.

Левая страница книги предназначена для левого каната (головного при подъеме со шкивом трения, тягового при пассажирских канатных дорогах). Ненужное в подзаголовке зачеркнуть.

Правая страница предназначена для правого каната (хвостового при подъеме со шкивом трения, натяжного при пассажирских канатных дорогах). Ненужное в подзаголовке зачеркнуть.

При уравновешенных подъемах барабанной системы и многоканатных подъемных установок на хвостовые канаты ведут отдельную книгу.

При ежесуточных осмотрах заполняют графы 1, 3, 5 и 10, при еженедельных осмотрах - графы 1, 2, 3, 5, 6, 7, 8, 9 и 10, при ежесменных - графу 4.

В графе 12 главный механик шахты или старший механик делает замечания об общем состоянии каната, то есть о коррозии, признаках деформирования каната, отслаивании проволок.

При ежемесячных осмотрах канатов заполняют все графы раздела книги. В графе 4 отмечают расстояние от конца каната у прицепного устройства до места, имеющего наибольшее число изломов проволок на шаге свивки каната. Это расстояние может измениться в зависимости от места появления наибольшего числа изломов проволок на шаге свивки каната. Если место наибольшего числа изломов проволок на шаге свивки находится на характерном участке каната (переходном витке, поджимками), то это должно быть отмечено.

Результаты инструментального контроля потери сечения металла проволок каната, проводимого не ежесуточно, а периодически, записывают через всю страницу.

В графе 5 отмечают удлинение каната, происходящее вследствие его растяжения при работе, особенно в первый период после навески. При отрубке излишней длины каната в графе 5 отмечают "Отрублено _ м".

В случаях экстренного напряжения каната немедленно проводят тщательный его осмотр и заполняют все необходимые графы. В этом случае в графе 5 указывают общее удлинение каната, происшедшее вследствие экстренного напряжения. В графе 11 главный механик делает отметку "Осмотр после экстренного напряжения".

При ежесуточных осмотрах канатов пассажирских канатных дорог заполняют графы 1, 3, 4 и 10, а при ежемесячных - 1, 2, 3, 4, 6, 7, 8 и 11. При этом в графе 4 место расположения наиболее поврежденного участка указывают по номерам подвесок.

При смене канатов через всю страницу делают отметку о снятии каната. Ниже делают отметку о навеске нового каната и описывают конструкцию, свивку, диаметр каната и номер его последнего испытания на канатно-испытательной станции.

Раздел II книги служит для учета расхода канатов на данной подъемно-транспортной установке и сроков их службы.

В графе 6 раздела II указывают сокращенным обозначением конструкцию и свивку каната.

Ответственность за правильное ведение книги, своевременное ее заполнение возлагается на главного механика шахты. Книга должна быть пронумерована, прошнурована и скреплена печатью.

Приложение N 12 к Федеральным нормам и правилам в области промышленной безопасности "Правила безопасности в угольных шахтах", утвержденным приказом Федеральной службы по экологическому, технологическому и атомному надзору от 19 ноября 2013 г. N 550

ТРЕБОВАНИЯ К ШАХТНЫМ КАНАТАМ ЗАПАС ПРОЧНОСТИ КАНАТОВ ШАХТНЫХ ПОДЪЕМНЫХ УСТАНОВОК ПРИ НАВЕСКЕ

TT C	
Назначение канатов и установок, тип подъемной машины	Отношение суммарно-
	го разрывного усилия
	проволок подъемного
	каната к максимальной
	статической нагрузке
а) Подъемные - людских и аварийно-ремонтных установок с машинами	9,0
барабанного типа, двухканатных со шкивами трения (при расчете по лю-	
дям), не оборудованных парашютами	
б) Подъемные - людских, грузолюдских и грузовых одноканатных и	8,0
людских и грузолюдских многоканатных со шкивами трения	
в) Подъемные - грузолюдских установок с машинами барабанного типа и	7,5
грузолюдских трехканатных со шкивами трения, не оборудованных па-	
рашютами, канаты для подвески грузчиков (грейферов) в стволе и про-	
ходческих люлек	
г) Подъемные - грузовых многоканатных установок	7,0
д) Подъемные - грузовых установок с машинами барабанного типа	6,5
е) Подъемные - передвижных аварийных установок, канатные проводни-	6,0
ки в стволах шахт, находящихся в эксплуатации, канаты для подвески	
полков при проходке стволов глубиной до 600 м, для подвески спаса-	
тельных лестниц, насосов, труб водоотлива, проходческих агрегатов	
ж) Уравновешивающие резинотросовые и канаты для подвески полков	5,5
при проходке стволов глубиной от 600 до 1500 м	
з) Отбойные - установок с канатными проводниками, канатные провод-	5,0
ники проходческих подъемных установок, канаты для подвески проход-	
ческого оборудования, в том числе стволопроходческих комбайнов в	
стволах глубиной более 900 м, за исключением указанного в подпунктах	
"в" и "е" для подвески полков при проходке стволов глубиной от 1500 до	
2000 м, новые подъемные канаты при разовом спуске тяжеловесных гру-	
зов подъемным сосудом или негабаритных грузов под ним при навеске	
(замене) подъемных сосудов на многоканатных подъемных установках	
и) Тормозные и амортизационные канаты парашютов клетей относитель-	3,0
но динамической нагрузки	
к) Стропы многократного использования при опускании негабаритных и	10,0
длинномерных грузов под подъемным сосудом, сигнальные тросы грузо-	
людских и людских подъемных установок	

ОТНОШЕНИЕ СУММАРНОГО РАЗРЫВНОГО УСИЛИЯ ВСЕХ ПРОВОЛОК КАНАТА К КОНЦЕВОМУ ГРУЗУ ДЛЯ ВЕРТИКАЛЬНЫХ СТВОЛОВ ПРИ МАКСИМАЛЬНОЙ ДЛИНЕ ОТВЕСА БОЛЕЕ 600 МЕТРОВ

Тип подъемных машин и назначение подъемных установок	Отношение суммарного разрывного усилия проволок подъемного каната к концевому грузу
Машины барабанного типа:	
людские	13
грузолюдские	10
грузовые	8,5
Подъемные машины со шкивами трения:	
одноканатные людские, грузолюдские и грузовые и многоканатные людские и грузолюдские установки, кроме двух- и трехканатных, не оборудованных парашютами	11,5
многоканатные грузовые	9,5

ЗАПАС ПРОЧНОСТИ КАНАТОВ ДОРОГ ВСПОМОГАТЕЛЬНОГО ТРАНСПОРТА ШАХТ ПРИ НАВЕСКЕ

Назначение канатов	Отношение суммарного разрывного усилия проволок подъемного каната к максимальной статической нагрузке
Тяговые для подземных пассажирских канатных дорог, монорельсовых и напочвенных рельсовых дорог при расчете по людям, натяжные подземных пассажирских подвесных канатных дорог	6
Тяговые для монорельсовых и напочвенных рельсовых дорог при расчете по грузу, вспомогательных лебедок в наклонных горных выработках	5
Тяговые для скреперных, маневровых и вспомогательных (по горизонтальным горным выработкам) лебедок	4
Тяговые для вспомогательных лебедок, используемых для подъема и опускания груза по вертикали	6

ЗАПАС ПРОЧНОСТИ КАНАТОВ ПРИ ОТКАТКЕ БЕСКОНЕЧНЫМ КАНАТОМ ПРИ НАВЕСКЕ

Длина откатки, м	До 300	От 300 до 600	От 600 до 900	От 900 до 1200	Свыше 1200
Запас прочности	5,5	5	4,5	4	3,5

ПРЕДЕЛЬНЫЙ СРОК СЛУЖБЫ КАНАТОВ

Назначение и конструкции каната	Предельный срок службы, лет	Порядок и условия продления срока службы
1	2	3
Подъемных установок со шкивом трения:		По результатам осмотра и инструментального контроля потери сечения стали проволок согласно требованиям
а) шестипрядные с органическим сердечником	2	раздела XLI "Инструментальный контроль" настоящих Правил - до 4 лет и свыше 4 лет - при инструментальном контроле потери сечения стали проволок и обрывов проволок
б) с металлическим сердечником шестипрядные, многопрядные, фасоннопрядные	2	По результатам осмотра и инструментального контроля потери сечения стали проволок согласно требованиям раздела XLI "Инструментальный контроль" настоящих Правил, а также инструментального контроля обрывов проволок - до 4 лет
Подъемные канаты установок с машинами барабанного типа:		
а) шестипрядные с органическим сердечником	2	По результатам осмотра и инструментального контроля потери сечения стали проволок согласно требованиям раздела XLI "Инструментальный контроль" настоящих Правил - до 3 лет на людских и грузолюдских подъемных установках; до 4 лет на грузовых подъемных установках и свыше соответственно 3 и 4 лет - при инструментальном контроле потери сечения и обрывах проволок
б) с металлическим сердечником, многопрядные и фасоннопрядные	2	По результатам осмотра и инструментального контроля потери сечения стали проволок согласно требованиям раздела XLI "Инструментальный контроль" настоящих Правил, а также инструментального контроля обрывов проволок - до 4 лет
Уравновешивающие подъ- емных установок:		
а) шестипрядные с органическим сердечником круглые многопрядные малокрутящиеся оцинкованные	2	По результатам осмотра и инструментального контроля потери сечения стали проволок согласно требованиям раздела XLI "Инструментальный контроль" настоящих Правил - до 4 лет и свыше 4 лет - при инструментальном контроле потери сечения стали проволок и обрывов проволок
б) плоские стальные: машин	4	Не продлевается
барабанного типа шкивы трения	2	По результатам осмотра через каждые шесть месяцев - до 4 лет
в) резинотросовые от стыка до стыка (или до конца у прицепного устройства)	5	В порядке, оговоренном в инструкции по эксплуатации огнестойких резинотросовых уравновешивающих канатов в шахтных стволах, - до 10 лет, а при навеске с запасом прочности более 12-кратного - до 15 лет
Тормозные парашюты	4	По результатам осмотра и инструментального контроля потери сечения стали проволок согласно требованиям раздела XLI "Инструментальный контроль" настоящих Правил - до 7 лет

1	2	3
Амортизационные пара-	5	По результатам осмотра через каждые 12 месяцев - до 7
шютов клетей		лет
Проводниковые и отбойные:		
а) шахт, находящихся в экс-		
плуатации:	4 =	**
закрытые	15	Не продлевается
прядевые	4	По результатам осмотра и инструментального контроля потери сечения стали проволок согласно требованиям раздела XLI "Инструментальный контроль" настоящих Правил - до 7 лет
б) строящихся шахт	3	По результатам осмотра и инструментального контроля потери сечения стали проволок согласно требованиям раздела XLI "Инструментальный контроль" настоящих Правил - до 5 лет
Для подвески полка и проходческого оборудования (труб, кабелей и др.): а) прядевые, которые можно проверить на потерю сечения:		
без покрытия диаметром до 45 мм	3	По результатам осмотра и инструментального контроля потери сечения стали проволок согласно требованиям раздела XLI "Инструментальный контроль" настоящих Правил - до 10 лет
без покрытия диаметром до 45 мм и более, а также оцинкованные	5	То же
б) прядевые, которые нельзя проверить на потерю сечения металла (например, из-за стесненных условий)	3	Не продлевается
в) закрытые	5	По результатам осмотра и инструментального контроля потери сечения стали проволок по всей длине, если он возможен, через каждый год - до 10 лет или по результатам испытаний отрезка каната, взятого у нижнего конца, через каждый год на канатно-испытательной станции - до 7 лет
Для подвески механических грузчиков (грейферов) при проходке стволов	2	Не продлевается

СРОКИ ПРОВЕДЕНИЯ (ПЕРИОДИЧНОСТЬ) ИНСТРУМЕНТАЛЬНОГО КОНТРОЛЯ КАНАТОВ

Назначение каната	Угол наклона горных выработок, град.	Период времени, мес.			
		До первой проверки	Между последующими проверками при потере сечения металла, %		
			До 12	До 15	> 15
Подъемный:					
оцинкованный	90	12	6	1	0,5
без покрытия	90	6	2	1	0,5
Подъемный	> 60	6	2	1	0,5
Подъемный	< 60	2	1	0,5	0,25
Для подвески спасательных лестниц и проходческих люлек	90	6	2	1	0,5
Для подвески стволопроходческих комбайнов с запасом прочности менее 6-кратного	90	12	2	1	3
Для подвески полков при проходке стволов при навеске с запасом прочности менее 6-кратного	90	12	2	2	-
Круглые стальные уравновешивающие	90		12	6	3
Тормозные парашютов	90		3	-	-
Проводниковые прядевые	90		6	3	3
Для подвески проходческого оборудования	90		12	6	3

Примечание. В горных выработках с углом наклона менее 60°, где установившийся срок службы канатов более шести месяцев, периодичность контроля устанавливает главный механик.